§1 SAT-CONNECTION INTRO 1

May 19, 2018 at 02:30

1. Intro. This program generates clauses that yield solutions (if any exist) of the following problem:
Given a graph and t disjoint subsets S; of its vertices, find disjoint connected subsets T} 2 S;.

(If t = 1 and we try to minimize 77, this is essentially the Steiner tree problem. I’'m not necessarily trying
to minimize (J T} in the clauses generated here, but additional cardinality constraints could be added.)

Notice that if each S; is a pair of elements, we get interesting routing problems, including some well-known
puzzles created by Loyd, Dudeney, and Dawson in the days of Queen Victoria. “Connect A to A, B to B,
..., H to H, via disjoint paths.” Martin Garner reprinted one of these classics in his first column on graph
theory [Scientific American, April 1964; Martin Gardner’s Sixthe Book of Mathematical Games, Chapter 10],
calling it a “printed-circuit problem.”

The command line should specify the graph. The subsets are specified in ¢ lines of stdin, by listing the
vertex names (separated by spaces).

I introduce Boolean variables by appending a character to each vertex name. Therefore all vertex names
should have length 7 or less.

Each S; of size s leads to s — 1 sets of variables, one per vertex; every such set constrains the variables of
color j to contain at least one path between the first vertex, w, of S;, and some other vertex, z.

When these clauses are satisfied, the Boolean variables of set k that are true will be a subset of vertices
whose induced graph is a path between w and z, together with zero or more cycles. Equivalently, it will be
a subset in which w and z have degree 1, while all other vertices have degree 0 or 2. This subset must be
disjoint from all subsets for Sy, ..., S;—1. Then T} will be the union of these subsets, over all s — 1 choices
of zin 5.

Since I assume that ¢ is rather small, I don’t do anything fancy to reduce the number of clauses that
enforce disjointness.

#define bufsize 80 /* maximum length of each line of input */

#include <stdio.h>
#include <stdlib.h>
#include "gb_graph.h"
#include "gb_save.h"
char buf[bufsize];
char namew [bufsize], namez[bufsize];
char code[] = "abcdefghijklmnopqrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789";

main (int argc, char xargu[])
{
register int j, t, m, mm;
register Graph xg;
register Vertex *v, xw, *z;
register Arc xa, b, *c;
register char #*p, xq;
(Process the command line 2);
(Mark all vertices unseen 3);
for (m=0,t=1; ; t++) {
if (—fgets(buf, bufsize, stdin)) break;
(Generate clauses for a new set of vertices 4);

(Disable singleton vertices 9);

2 INTRO SAT-CONNECTION §2

2. (Process the command line 2) =

if (arge #£2) {
forintf (stderr, "Usage: ks foo.gb\n", argv|[0]);
exit (—1);

¥

g = restore_graph (argv[1]);

if () {
forintf (stderr, "I couldn’t reconstruct, graph,¥%s!\n", argv[l]);
exit(—2);

}

hash_setup(g);

printf ("~ sat-connection, %s\n", argu[1]);

This code is used in section 1.

3. #define seen z.1
(Mark all vertices unseen 3) =
for (v = g~vertices; v < g~vertices + g-n; v++) v-seen = 0;

This code is used in section 1.

84 SAT-CONNECTION INTRO

4. (Generate clauses for a new set of vertices 4) =

mm = m; /* remember the number of clauses sets for previous colors */
for (p=buf; xp="0"; p++) ; /x skip blanks x/
if (xp=’\n’) fprintf(stderr,"Warning: An_ empty line of_ input_is_being ignored!\n");
else {

for (namew|[0] = *p,q=p+1; *q # L’ Axq# ’\n’; q++) namew[q — p| = *q;

namew[q — p] = *\0’;

if (q—p>7) {

fprintf (stderr, "Sorry, the name of vertex %s_is_too,long!\n", namew);

exit (—3);
}

w = hash_out(namew);

if (~uw) {
fprintf (stderr, "Vertex_ %s isn’t in that graph!\n", namew);
exit (—33);

if (w-seen) {
forintf (stderr, "Vertex %s has already occurred!\n", namew);
exit(—6);

}

w-seen = 1;
while (1) {
for (p=gq; xp="0"; p++) ; /* skip blanks s/
if (xp = ’\n’) break;
for (namez[0] = +p,q =p+1; *xq # L Axq# °\n’; q++) namez|q — p| = *q;
namez[q — p] = >\0’;
if (g—p>7) {
forintf (stderr, "Sorry, the name of vertex, %s,is too long!\n", namez);
exit (—4);
¥
z = hash_out(namez);
if (—2) {
forintf (stderr, "Vertex %s_isn’t,in that, graph!\n", namez);
exit(—44);

if (z~seen) {
forintf (stderr, "Vertex_%s has already occurred!\n", namez);
exit (—66);

}

z~seen = 1;

if (—code[m]) {
forintf (stderr, "Sorry, I can’t handle this many cases!\n");
forintf (stderr, "Recompile me_ with a longer ,code_ string.\n");
exit (—5);

printf ("~Lstepukc,uconnecting %syutoyks\n", code[m], namew, namez);
(Generate clauses to connect w with z 5);
m++;

if (mm =m) {
w-seen = —1;
printf ("~ ,singleton vertex %s\n", namew);

4 INTRO SAT-CONNECTION §4

}
}

This code is used in section 1.

5. (Generate clauses to connect w with z 5) =
for (v = g~vertices; v < g~vertices + g-n; v++)
for (j =0; j < mm; j++) printf ("~ hsheu " hshe\n", v-name, code|[m|, v-name, code|[j]);
for (v = g~vertices; v < g~vertices + g-n; v++) {
if (v=wVwv=z) (Generate clauses for an endpoint 6)
else {
(Generate clauses to forbid v of degree < 2 7);
(Generate clauses to forbid v of degree > 2 8);

}
}

This code is used in section 4.

6. (Generate clauses for an endpoint 6) =
{
printf ("hskhc\n", v-name, code[m)); /x the endpoint is present */
for (a = v~arcs; a; a = a~neat) printf ("Lhshe", a-tip~name, code|[m));
printf ("\n"); /* at least one neighbor is present */
for (a = v~ares; a; a = a~neat)
for (b = a~next; b; b = b-next)
printf ("~%sheu~hshe\n", a~tip~name, code[m], b-tip~name, code[m]);
/* at most one neighbor is present =/

}

This code is used in section 5.

7. (Generate clauses to forbid v of degree < 2 7) =
for (a = v~arcs; a; a = a~next) {
printf ("~%she", v-name, code[m));
for (b = v~arcs; b; b = b-next)
if (a #b) printf ("uhshe", b-tip-name, code[m));
printf ("\n");

}

This code is used in section 5.

8. (Generate clauses to forbid v of degree > 2 8) =
for (a = v~arcs; a; a = a~next)
for (b = a~next; b; b = b-neat)
for (c = b nexat; ¢; ¢ = coneat) printf ("~hsheu~hsheu~hsheu~hshe\n" , v-name, code[m)],
a~tip~name, code [m], b~tip-name, code[m], c-tip~name, code[m]);

This code is used in section 5.

9. The logic is a little tricky for cases when S; contains just a single vertex, u. We want 7 = §; in such
cases, but no clauses are generated. The only record of past singletons is the fact that u~seen is —1; so we
use that fact to disallow u in T} for all 5/ # j.

(Disable singleton vertices 9) =
for (v = g~vertices; v < g~vertices + g-n; v++)
if (v-seen = —1)
for (j=0; j <m; j++) printf ("~ %she\n", v-name, code|j]);

This code is used in section 1.

§10 SAT-CONNECTION INDEX 5

10. Index.
a: 1.
Arc:
arcs:
argc:
arqgu:
b: 1.
buf: 1, 4.
bufsize: 1.
c: 1.
code: 1,4
erit: 2, 4.
fgets: 1.
forintf: 2, 4.

g 1.

Graph: 1.
hash_out: 4.
hash_setup: 2.

7o 1.

m: 1.

main: 1.

mm: 1, 4, 5.
name: 5, 6, 7, 8, 9.
namew: 1, 4.
namez: 1, 4.

nexrt: 6, 7, 8.

p: 1.

printf: 2, 4,5, 6, 7,8, 9.
q 1.

restore_graph: 2.

seen: 3, 4, 9.

stderr: 2, 4.

stdin: 1.

t. 1.

tip: 6, 7, 8.

v 1.

Vertex: 1.

vertices: 3, 5, 9.

w: 1.

z: 1.

== O =
NGRS

.5, 6,7, 8 9.

6 NAMES OF THE SECTIONS

Disable singleton vertices 9) Used in section 1.

Generate clauses for a new set of vertices 4) Used in section 1.
Generate clauses for an endpoint 6) Used in section 5.
Generate clauses to connect w with z 5) Used in section 4.

Mark all vertices unseen 3) Used in section 1.
Process the command line 2) Used in section 1.

o~~~ o~~~ o~~~

Generate clauses to forbid v of degree < 2 7) Used in section 5.
Generate clauses to forbid v of degree > 2 8) Used in section 5.

SAT-CONNECTION

SAT-CONNECTION

Section Page

