
§1 GB ECON INTRODUCTION 1

Important: Before reading GB ECON, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the econ subroutine, which creates a family of
directed graphs related to the flow of money between industries. An example of the use of this procedure
can be found in the demo program ECON ORDER.

⟨ gb_econ.h 1 ⟩ ≡
extern Graph ∗econ ();

See also section 5.

2. The subroutine call econ (n, omit , threshold , seed) constructs a directed graph based on the information
in econ.dat. Each vertex of the graph corresponds to one of 81 sectors of the U.S. economy. The data
values come from the year 1985; they were derived from tables published in Survey of Current Business 70
(1990), 41–56.
If omit = threshold = 0, the directed graph is a “circulation”; that is, each arc has an associated flow

value, and the sum of arc flows leaving each vertex is equal to the sum of arc flows entering. This sum is
called the “total commodity output” for the sector in question. The flow in an arc from sector j to sector k
is the amount of the commodity made by sector j that was used by sector k, rounded to millions of dollars at
producers’ prices. For example, the total commodity output of the sector called Apparel is 54031, meaning
that the total cost of making all kinds of apparel in 1985 was about 54 billion dollars. There is an arc from
Apparel to itself with a flow of 9259, meaning that 9.259 billion dollars’ worth of apparel went from one
group within the apparel industry to another. There also is an arc of flow 44 from Apparel to Household

furniture, indicating that some 44 million dollars’ worth of apparel went into the making of household
furniture. By looking at all arcs that leave the Apparel vertex, you can see where all that new apparel
went; by looking at all arcs that enter Apparel, you can see what ingredients the apparel industry needed
to make it.
One vertex, called Users, represents people like you and me, the non-industrial end users of everything.

The arc from Apparel to Users has flow 42172; this is the “total final demand” for apparel, the amount
that didn’t flow into other sectors of the economy before it reached people like us. The arc from Users to
Apparel has flow 19409, which is called the “value added” by users; it represents wages and salaries paid
to support the manufacturing process. The sum of total final demand over all sectors, which also equals the
sum of value added over all sectors, is conventionally called the Gross National Product (GNP). In 1985 the
GNP was 3999362, nearly 4 trillion dollars, according to econ.dat. (The sum of all arc flows coming out of
all vertices was 7198680; this sum overestimates the total economic activity, because it counts some items
more than once—statistics are recorded whenever an item passes a statistics gatherer. Economists try to
adjust the data so that they avoid double-counting as much as possible.)
Speaking of economists, there is another special vertex called Adjustments, included by economists so

that GNP is measured more accurately. This vertex takes account of such things as changes in the value of
inventories, and imported materials that cannot be obtained within the U.S., as well as work done for the
government and for foreign concerns. In 1985, these adjustments accounted for about 11% of the GNP.
Incidentally, some of the “total final demand” arcs are negative. For example, the arc from Petroleum

and natural gas production to Users has flow −27032. This might seem strange at first, but it makes
sense when imports are considered, because crude oil and natural gas go more to other industries than to
end users. Total final demand does not mean total user demand.

#define flow a.I /∗ utility field a specifies the flow in an arc ∗/

2 INTRODUCTION GB ECON §3

3. If omit = 1, the Users vertex is omitted from the digraph; in particular, this will eliminate all arcs of
negative flow. If omit = 2, the Adjustments vertex is also omitted, thereby leaving 79 sectors with arcs
showing inter-industry flow. (The graph is no longer a “circulation,” of course, when omit > 0.) If Users
and Adjustments are not omitted, Users is the last vertex of the graph, and Adjustments is next-to-last.

If threshold = 0, the digraph has an arc for every nonzero flow . But if threshold > 0, the digraph becomes
more sparse; there is then an arc from j to k if and only if the amount of commodity j used by sector k
exceeds threshold /65536 times the total input of sector k. (The total input figure always includes value
added, even if omit > 0.) Thus the arcs go to each sector from that sector’s main suppliers. When n = 79,
omit = 2, and threshold = 0, the digraph has 4602 arcs out of a possible 79× 79 = 6241. Raising threshold
to 1 decreases the number of arcs to 4473; raising it to 6000 leaves only 72 arcs. The len field in each arc
is 1.
The constructed graph will have min(n, 81 − omit) vertices. If n is less than 81 − omit , the n vertices

will be selected by repeatedly combining related sectors. For example, two of the 81 original sectors are
called ‘Paper products, except containers’ and ‘Paperboard containers and boxes’; these might be
combined into a sector called ‘Paper products’. There is a binary tree with 79 leaves, which describes a
fixed hierarchical breakdown of the 79 non-special sectors. This tree is pruned, if necessary, by replacing
pairs of leaves by their parent node, which becomes a new leaf; pruning continues until just n leaves remain.
Although pruning is a bottom-up process, its effect can also be obtained from the top down if we imagine
“growing” the tree, starting out with a whole economy as a single sector and repeatedly subdividing a sector
into two parts. For example, if omit = 2 and n = 2, the two sectors will be called Goods and Services.
If n = 3, Goods might be subdivided into Natural Resources and Manufacturing; or Services might be
subdivided into Indirect Services and Direct Services.
If seed = 0, the binary tree is pruned in such a way that the n resulting sectors are as equal as possible

with respect to total input and output, while respecting the tree structure. If seed > 0, the pruning
is carried out at random, in such a way that all n-leaf subtrees of the original tree are obtained with
approximately equal probability (depending on seed in a machine-independent fashion). Any seed value
from 1 to 231 − 1 = 2147483647 is permissible.
As usual in GraphBase routines, you can set n = 0 to get the default situation where n has its maximum

value. For example, either econ (0, 0, 0, 0) or econ (81, 0, 0, 0) produces the full graph; econ (0, 2, 0, 0) or
econ (79, 2, 0, 0) produces the full graph except for the two special vertices.

#define MAX_N 81 /∗ maximum number of vertices in constructed graph ∗/
#define NORM_N MAX_N − 2 /∗ the number of normal SIC sectors ∗/
#define ADJ_SEC MAX_N − 1 /∗ code number for the Adjustments sector ∗/

4. The U.S. Bureau of Economic Analysis and the U.S. Bureau of the Census have assigned code numbers 1–
79 to the individual sectors for which statistics are given in econ.dat. These sector numbers are traditionally
called Standard Industrial Classification (SIC) codes. If for some reason you want to know the SIC codes
for all sectors represented by vertex v of a graph generated by econ , you can access them via a list of Arc
nodes starting at the utility field v⃗ SIC codes . This list is linked by next fields in the usual way, and each
SIC code appears in the len field; the tip field is unused.
The special vertex Adjustments is given code number 80; it is actually a composite of six different SIC

categories, numbered 80–86 in their published tables.
For example, if n = 80 and omit = 1, each list will have length 1. Hence v⃗ SIC codes⃗ next will equal Λ

for each v, and v⃗ SIC codes⃗ len will be v’s SIC code, a number between 1 and 80.
The special vertex Users has no SIC code; it is the only vertex whose SIC codes field will be null in the

graph returned by econ .

#define SIC codes z.A /∗ utility field z leads to the SIC codes for a vertex ∗/

§5 GB ECON INTRODUCTION 3

5. The total output of each sector, which also equals the total input of that sector, is placed in utility field
sector total of the corresponding vertex.

#define sector total y.I /∗ utility field y holds the total flow in and out ∗/
⟨ gb_econ.h 1 ⟩ +≡
#define flow a.I /∗ definitions of utility fields in the header file ∗/
#define SIC codes z.A
#define sector total y.I

6. If the econ routine encounters a problem, it returns Λ (NULL), after putting a nonzero number into
the external variable panic code . This code number identifies the type of failure. Otherwise econ returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }

7. The C file gb_econ.c has the following overall shape:

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ and of course we’ll use the GB GRAPH data structures ∗/
⟨Preprocessor definitions ⟩
⟨Type declarations 11 ⟩
⟨Private variables 12 ⟩
Graph ∗econ (n, omit , threshold , seed)

unsigned long n; /∗ number of vertices desired ∗/
unsigned long omit ; /∗ number of special vertices to omit ∗/
unsigned long threshold ; /∗ minimum per-64K-age in arcs leading in ∗/
long seed ; /∗ random number seed ∗/

{ ⟨Local variables 8 ⟩
gb init rand (seed);
init area (working storage);
⟨Check the parameters and adjust them for defaults 9 ⟩;
⟨Set up a graph with n vertices 10 ⟩;
⟨Read econ.dat and note the binary tree structure 14 ⟩;
⟨Determine the n sectors to use in the graph 17 ⟩;
⟨Put the appropriate arcs into the graph 25 ⟩;
if (gb close () ̸= 0) panic(late data fault);

/∗ something’s wrong with "econ.dat"; see io errors ∗/
gb free (working storage);
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

8. ⟨Local variables 8 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by econ ∗/
register long j, k; /∗ all-purpose indices ∗/
Area working storage ; /∗ tables needed while econ does its thinking ∗/

See also section 13.

This code is used in section 7.

4 INTRODUCTION GB ECON §9

9. ⟨Check the parameters and adjust them for defaults 9 ⟩ ≡
if (omit > 2) omit = 2;
if (n ≡ 0 ∨ n > MAX_N − omit) n = MAX_N − omit ;
else if (n+ omit < 3) omit = 3− n; /∗ we need at least one normal sector ∗/
if (threshold > 65536) threshold = 65536;

This code is used in section 7.

10. ⟨Set up a graph with n vertices 10 ⟩ ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "econ(%lu,%lu,%lu,%ld)", n, omit , threshold , seed);
strcpy (new graph⃗util types , "ZZZZIAIZZZZZZZ");

This code is used in section 7.

§11 GB ECON THE ECONOMIC TREE 5

11. The economic tree. As we read in the data, we construct a sequential list of nodes, each of which
represents either a micro-sector of the economy (one of the basic SIC sectors) or a macro-sector (which is the
union of two subnodes). In more technical terms, the nodes form an extended binary tree, whose external
nodes correspond to micro-sectors and whose internal nodes correspond to macro-sectors. The nodes of the
tree appear in preorder. Subsequently we will do a variety of operations on this binary tree, proceeding
either top-down (from the beginning of the list to the end) or bottom-up (from the end to the beginning).
Each node is a rather large record, because we will store a complete vector of sector output data in each

node.

⟨Type declarations 11 ⟩ ≡
typedef struct node struct { /∗ records for micro- and macro-sectors ∗/
struct node struct ∗rchild ; /∗ pointer to right child of macro-sector ∗/
char title [44]; /∗ "Sector␣name" ∗/
long table [MAX_N + 1]; /∗ outputs from this sector ∗/
unsigned long total ; /∗ total input to this sector (= total output) ∗/
long thresh ; /∗ flow must exceed thresh in arcs to this sector ∗/
long SIC; /∗ SIC code number; initially zero in macro-sectors ∗/
long tag ; /∗ 1 if this node will be a vertex in the graph ∗/
struct node struct ∗link ; /∗ next smallest unexplored sector ∗/
Arc ∗SIC list ; /∗ first item on list of SIC codes ∗/

} node;

This code is used in section 7.

12. When we read the given data in preorder, we’ll need a stack to remember what nodes still need to
have their rchild pointer filled in. (There is a no need for an lchild pointer, because the left child always
follows its parent immediately in preorder.)

⟨Private variables 12 ⟩ ≡
static node ∗stack [NORM_N + NORM_N];
static node ∗∗stack ptr ; /∗ current position in stack ∗/
static node ∗node block ; /∗ array of nodes, specifies the tree in preorder ∗/
static node ∗node index [MAX_N + 1]; /∗ which node has a given SIC code ∗/

See also section 26.

This code is used in section 7.

13. ⟨Local variables 8 ⟩ +≡
register node ∗p, ∗pl , ∗pr ; /∗ current node and its children ∗/
register node ∗q; /∗ register for list manipulation ∗/

14. ⟨Read econ.dat and note the binary tree structure 14 ⟩ ≡
node block = gb typed alloc(2 ∗ MAX_N − 3,node,working storage);
if (gb trouble code) panic(no room + 1); /∗ no room to copy the data ∗/
if (gb open ("econ.dat") ̸= 0) panic(early data fault);

/∗ couldn’t open "econ.dat" using GraphBase conventions ∗/
⟨Read and store the sector names and SIC numbers 15 ⟩;
for (k = 1; k ≤ MAX_N; k++) ⟨Read and store the output coefficients for sector k 16 ⟩;

This code is used in section 7.

6 THE ECONOMIC TREE GB ECON §15

15. The first part of econ.dat specifies the nodes of the binary tree in preorder. Each line contains a node
name followed by a colon, and the colon is followed by the SIC number if that node is a leaf.
The tree is uniquely specified in this way, because of the nature of preorder. (Think of Polish prefix

notation, in which a formula like ‘+x+xx’ means ‘+(x,+(x, x))’; the parentheses in Polish notation are
redundant.)
The two special sector names don’t appear in the file; we manufacture them ourselves.
The program here is careful not to clobber itself in the presence of arbitrarily garbled data.

⟨Read and store the sector names and SIC numbers 15 ⟩ ≡
stack ptr = stack ;
for (p = node block ; p < node block + NORM_N + NORM_N − 1; p++) { register long c;

gb string (p⃗ title , ’:’);
if (strlen (p⃗ title) > 43) panic(syntax error); /∗ sector name too long ∗/
if (gb char () ̸= ’:’) panic(syntax error + 1); /∗ missing colon ∗/
p⃗ SIC = c = gb number (10);
if (c ≡ 0) /∗ macro-sector ∗/

∗stack ptr ++ = p; /∗ left child is p+ 1, we’ll know rchild later ∗/
else { /∗ micro-sector; p+ 1 will be somebody’s right child ∗/

node index [c] = p;
if (stack ptr > stack) (∗−−stack ptr)⃗ rchild = p+ 1;

}
if (gb char () ̸= ’\n’) panic(syntax error + 2); /∗ garbage on the line ∗/
gb newline ();

}
if (stack ptr ̸= stack) panic(syntax error + 3); /∗ tree malformed ∗/
for (k = NORM_N; k; k−−)
if (node index [k] ≡ 0) panic(syntax error + 4); /∗ SIC code not mentioned in the tree ∗/

strcpy (p⃗ title , "Adjustments"); p⃗ SIC = ADJ_SEC; node index [ADJ_SEC] = p;
strcpy ((p+ 1)⃗ title , "Users"); node index [MAX_N] = p+ 1;

This code is used in section 14.

§16 GB ECON THE ECONOMIC TREE 7

16. The remaining part of econ.dat is an 81 × 80 matrix in which the kth row contains the outputs of
sector k to all sectors except Users. Each row consists of a blank line followed by 8 data lines; each data line
contains 10 numbers separated by commas. Zeroes are represented by "" instead of by "0". For example,
the data line

8490,2182,42,467,,,,,,

follows the initial blank line; it means that sector 1 output 8490 million dollars to itself, $2182M to sector 2,
. . . , $0M to sector 10.

⟨Read and store the output coefficients for sector k 16 ⟩ ≡
{ register long s = 0; /∗ row sum ∗/
register long x; /∗ entry read from econ.dat ∗/
if (gb char () ̸= ’\n’) panic(syntax error + 5); /∗ blank line missing between rows ∗/
gb newline ();
p = node index [k];
for (j = 1; j < MAX_N; j++) {

p⃗ table [j] = x = gb number (10); s += x;
node index [j]⃗ total += x;
if ((j % 10) ≡ 0) {

if (gb char () ̸= ’\n’) panic(syntax error + 6); /∗ out of synch in input file ∗/
gb newline ();

} else if (gb char () ̸= ’,’) panic(syntax error + 7); /∗ missing comma after entry ∗/
}
p⃗ table [MAX_N] = s; /∗ sum of table [1] through table [80] ∗/

}
This code is used in section 14.

8 GROWING A SUBTREE GB ECON §17

17. Growing a subtree. Once all the data appears in node block , we want to extract from it and
combine it as specified by parameters n, omit , and seed . This amalgamation process effectively prunes the
tree; it can also be regarded as a procedure that grows a subtree of the full economic tree.

⟨Determine the n sectors to use in the graph 17 ⟩ ≡
{ long l = n+ omit − 2; /∗ the number of leaves in the desired subtree ∗/
if (l ≡ NORM_N) ⟨Choose all sectors 18 ⟩
else if (seed) ⟨Grow a random subtree with l leaves 21 ⟩
else ⟨Grow a subtree with l leaves by subdividing largest sectors first 19 ⟩;

}
This code is used in section 7.

18. The chosen leaves of our subtree are identified by having their tag field set to 1.

⟨Choose all sectors 18 ⟩ ≡
for (k = NORM_N; k; k−−) node index [k]⃗ tag = 1;

This code is used in section 17.

19. To grow the l-leaf subtree when seed = 0, we first pass over the tree bottom-up to compute the
total input (and output) of each macro-sector; then we proceed from the top down to subdivide sectors
in decreasing order of their total input. This process provides a good introduction to the bottom-up and
top-down tree methods we will be using in several other parts of the program.
The special node is used here for two purposes: It is the head of a linked list of unexplored nodes, sorted

by decreasing order of their total fields; and it appears at the end of that list, because special⃗ total = 0.

⟨Grow a subtree with l leaves by subdividing largest sectors first 19 ⟩ ≡
{ register node ∗special = node index [MAX_N]; /∗ the Users node at the end of node block ∗/
for (p = node index [ADJ_SEC]− 1; p ≥ node block ; p−−) /∗ bottom up ∗/
if (p⃗ rchild) p⃗ total = (p+ 1)⃗ total + p⃗ rchild⃗ total ;

special⃗ link = node block ; node block⃗ link = special ; /∗ start at the root ∗/
k = 1; /∗ k is the number of nodes we have tagged or put onto the list ∗/
while (k < l) ⟨ If the first node on the list is a leaf, delete it and tag it; otherwise replace it by its two

children 20 ⟩;
for (p = special⃗ link ; p ̸= special ; p = p⃗ link) p⃗ tag = 1; /∗ tag everything on the list ∗/

}
This code is used in section 17.

20. ⟨ If the first node on the list is a leaf, delete it and tag it; otherwise replace it by its two children 20 ⟩ ≡
{
p = special⃗ link ; /∗ remove p, the node with greatest total ∗/
special⃗ link = p⃗ link ;
if (p⃗ rchild ≡ 0) p⃗ tag = 1; /∗ p is a leaf ∗/
else {
pl = p+ 1; pr = p⃗ rchild ;
for (q = special ; q⃗ link⃗ total > pl⃗ total ; q = q⃗ link) ;
pl⃗ link = q⃗ link ; q⃗ link = pl ; /∗ insert left child in its proper place ∗/
for (q = special ; q⃗ link⃗ total > pr⃗ total ; q = q⃗ link) ;
pr⃗ link = q⃗ link ; q⃗ link = pr ; /∗ insert right child in its proper place ∗/
k++;

}
}

This code is used in section 19.

§21 GB ECON GROWING A SUBTREE 9

21. We can obtain a uniformly distributed l-leaf subtree of a given tree by choosing the root when l = 1
or by using the following idea when l > 1: Suppose the given tree T has subtrees T0 and T1. Then it has
T (l) subtrees with l leaves, where T (l) =

∑
k T0(k)T1(l − k). We choose a random number r between 0 and

T (l) − 1, and we find the smallest m such that
∑

k≤m T0(k)T1(l − k) > r. Then we proceed recursively to
compute a random m-leaf subtree of T0 and a random (l −m)-leaf subtree of T1.

A difficulty arises when T (l) is 231 or more. But then we can replace T0(k) and T1(l − k) in the formulas
above by ⌈T0(k)/d0⌉ and ⌈T1(k)/d1⌉, respectively, where d0 and d1 are arbitrary constants; this yields smaller
values T (l) that define approximately the same distribution of k.
The program here computes the T (l) values bottom-up, then grows a random tree top-down. If node p is

not a leaf, its table [0] field will be set to the number of leaves below it; and its table [l] field will be set to
T (l), for 1 ≤ l ≤ table [0].

The data in econ.dat is sufficiently simple that most of the T (l) values are less than 231. We need to
scale them down to avoid overflow only at the root node of the tree; this case is handled separately.
We set the tag field of a node equal to the number of leaves to be grown in the subtree rooted at that

node. This convention is consistent with our previous stipulation that tag = 1 should characterize the nodes
that are chosen to be vertices.

⟨Grow a random subtree with l leaves 21 ⟩ ≡
{
node block⃗ tag = l;
for (p = node index [ADJ_SEC]− 1; p > node block ; p−−) /∗ bottom up, except root ∗/
if (p⃗ rchild) ⟨Compute the T (l) values for subtree p 22 ⟩;

for (p = node block ; p < node index [ADJ_SEC]; p++) /∗ top down, from root ∗/
if (p⃗ tag > 1) {
l = p⃗ tag ;
pl = p+ 1; pr = p⃗ rchild ;
if (pl⃗ rchild ≡ Λ) {
pl⃗ tag = 1; pr⃗ tag = l − 1;

} else if (pr⃗rchild ≡ Λ) {
pl⃗ tag = l − 1; pr⃗ tag = 1;

} else ⟨Stochastically determine the number of leaves to grow in each of p’s children 24 ⟩;
}

}
This code is used in section 17.

10 GROWING A SUBTREE GB ECON §22

22. Here we are essentially multiplying two generating functions. Suppose f(z) =
∑

l T (l)z
l; then we are

computing fp(z) = z + fpl(z)fpr(z).

⟨Compute the T (l) values for subtree p 22 ⟩ ≡
{
pl = p+ 1; pr = p⃗ rchild ;
p⃗ table [1] = p⃗ table [2] = 1; /∗ T (1) and T (2) are always 1 ∗/
if (pl⃗ rchild ≡ 0) { /∗ left child is a leaf ∗/
if (pr⃗rchild ≡ 0) p⃗ table [0] = 2; /∗ and so is the right child ∗/
else { /∗ no, it isn’t ∗/

for (k = 2; k ≤ pr⃗ table [0]; k++) p⃗ table [1 + k] = pr⃗ table [k];
p⃗ table [0] = pr⃗ table [0] + 1;

}
} else if (pr⃗rchild ≡ 0) { /∗ right child is a leaf ∗/

for (k = 2; k ≤ pl⃗ table [0]; k++) p⃗ table [1 + k] = pl⃗ table [k];
p⃗ table [0] = pl⃗ table [0] + 1;

} else { /∗ neither child is a leaf ∗/
⟨Set p⃗ table [2], p⃗ table [3], . . . to convolution of pl and pr table entries 23 ⟩;
p⃗ table [0] = pl⃗ table [0] + pr⃗ table [0];

}
}

This code is used in section 21.

23. ⟨Set p⃗ table [2], p⃗ table [3], . . . to convolution of pl and pr table entries 23 ⟩ ≡
p⃗ table [2] = 0;
for (j = pl⃗ table [0]; j; j−−) { register long t = pl⃗ table [j];

for (k = pr⃗ table [0]; k; k−−) p⃗ table [j + k] += t ∗ pr⃗ table [k];
}

This code is used in section 22.

24. ⟨Stochastically determine the number of leaves to grow in each of p’s children 24 ⟩ ≡
{ register long ss , rr ;

j = 0; /∗ we will set j = 1 if scaling is necessary at the root ∗/
if (p ≡ node block) {

ss = 0;
if (l > 29 ∧ l < 67) {
j = 1; /∗ more than 231 possibilities exist ∗/
for (k = (l > pr⃗ table [0] ? l − pr⃗ table [0] : 1); k ≤ pl⃗ table [0] ∧ k < l; k++)
ss += ((pl⃗ table [k] + #3ff) ≫ 10) ∗ pr⃗ table [l − k]; /∗ scale with d0 = 1024, d1 = 1 ∗/

} else
for (k = (l > pr⃗ table [0] ? l − pr⃗ table [0] : 1); k ≤ pl⃗ table [0] ∧ k < l; k++)
ss += pl⃗ table [k] ∗ pr⃗ table [l − k];

} else ss = p⃗ table [l];
rr = gb unif rand (ss);
if (j)
for (ss = 0, k = (l > pr⃗ table [0] ? l − pr⃗ table [0] : 1); ss ≤ rr ; k++)
ss += ((pl⃗ table [k] + #3ff) ≫ 10) ∗ pr⃗ table [l − k];

else
for (ss = 0, k = (l > pr⃗ table [0] ? l − pr⃗ table [0] : 1); ss ≤ rr ; k++)

ss += pl⃗ table [k] ∗ pr⃗ table [l − k];
pl⃗ tag = k − 1; pr⃗ tag = l − k + 1;

}
This code is used in section 21.

§25 GB ECON ARCS 11

25. Arcs. In the general case, we have to combine some of the basic micro-sectors into macro-sectors by
adding together the appropriate input/output coefficients. This is a bottom-up pruning process.
Suppose p is being formed as the union of pl and pr . Then the arcs leading out of p are obtained by

summing the numbers on arcs leading out of pl and pr ; the arcs leading into p are obtained by summing the
numbers on arcs leading into pl and pr ; the arcs from p to itself are obtained by summing the four numbers
on arcs leading from pl or pr to pl or pr .
We maintain the node index table so that its non-Λ entries contain all the currently active nodes. When pl

and pr are being pruned in favor of p, node p inherits pl ’s place in node index ; pr ’s former place becomes Λ.

⟨Put the appropriate arcs into the graph 25 ⟩ ≡
⟨Prune the sectors that are used in macro-sectors, and form the lists of SIC sector codes 28 ⟩;
⟨Make the special nodes invisible if they are omitted, visible otherwise 30 ⟩;
⟨Compute individual thresholds for each chosen sector 27 ⟩;
{ register Vertex ∗v = new graph⃗vertices + n;

for (k = MAX_N; k; k−−)
if ((p = node index [k]) ̸= Λ) {
vert index [k] = −−v;
v⃗ name = gb save string (p⃗ title);
v⃗ SIC codes = p⃗ SIC list ;
v⃗ sector total = p⃗ total ;

} else vert index [k] = Λ;
if (v ̸= new graph⃗vertices) panic(impossible); /∗ bug in algorithm; this can’t happen ∗/
for (j = MAX_N; j; j−−)
if ((p = node index [j]) ̸= Λ) { register Vertex ∗u = vert index [j];

for (k = MAX_N; k; k−−)
if ((v = vert index [k]) ̸= Λ)

if (p⃗ table [k] ̸= 0 ∧ p⃗ table [k] > node index [k]⃗ thresh) {
gb new arc(u, v, 1L);
u⃗ arcs⃗ flow = p⃗ table [k];

}
}

}
This code is used in section 7.

26. ⟨Private variables 12 ⟩ +≡
static Vertex ∗vert index [MAX_N + 1]; /∗ the vertex assigned to an SIC code ∗/

27. The theory underlying this step is the following, for integers a, b, c, d with b, d > 0:

a

b
>

c

d
⇐⇒ a >

⌊
b

d

⌋
c+

⌊
(b mod d)c

d

⌋
.

In our case, b = p⃗ total and c = threshold ≤ d = 65536 = 216, hence the multiplications cannot overflow.
(But they can come awfully darn close.)

⟨Compute individual thresholds for each chosen sector 27 ⟩ ≡
for (k = MAX_N; k; k−−)
if ((p = node index [k]) ̸= Λ) {
if (threshold ≡ 0) p⃗ thresh = −99999999;
else p⃗ thresh = ((p⃗ total ≫ 16) ∗ threshold) + (((p⃗ total & #ffff) ∗ threshold) ≫ 16);

}
This code is used in section 25.

12 ARCS GB ECON §28

28. ⟨Prune the sectors that are used in macro-sectors, and form the lists of SIC sector codes 28 ⟩ ≡
for (p = node index [ADJ_SEC]; p ≥ node block ; p−−) { /∗ bottom up ∗/
if (p⃗ SIC) { /∗ original leaf ∗/

p⃗ SIC list = gb virgin arc();
p⃗ SIC list⃗ len = p⃗ SIC;

} else {
pl = p+ 1; pr = p⃗ rchild ;
if (p⃗ tag ≡ 0) p⃗ tag = pl⃗ tag + pr⃗ tag ;
if (p⃗ tag ≤ 1) ⟨Replace pl and pr by their union, p 29 ⟩;

}
}

This code is used in section 25.

29. ⟨Replace pl and pr by their union, p 29 ⟩ ≡
{ register Arc ∗a = pl⃗ SIC list ;
register long jj = pl⃗ SIC, kk = pr⃗SIC;

p⃗ SIC list = a;
while (a⃗ next) a = a⃗ next ;
a⃗ next = pr⃗SIC list ;
for (k = MAX_N; k; k−−)
if ((q = node index [k]) ̸= Λ) {

if (q ̸= pl ∧ q ̸= pr) q⃗ table [jj] += q⃗ table [kk];
p⃗ table [k] = pl⃗ table [k] + pr⃗ table [k];

}
p⃗ total = pl⃗ total + pr⃗ total ;
p⃗ SIC = jj ;
p⃗ table [jj] += p⃗ table [kk];
node index [jj] = p;
node index [kk] = Λ;

}
This code is used in section 28.

30. If the Users vertex is not omitted, we need to compute each sector’s total final demand, which is
calculated so that the row sums and column sums of the input/output coefficients come out equal. We’ve
already computed the column sum, p⃗ total ; we’ve also computed p⃗ table [1]+ · · ·+ p⃗ table [ADJ_SEC], and put
it into p⃗ table [MAX_N]. So now we want to replace p⃗ table [MAX_N] by p⃗ total − p⃗ table [MAX_N]. As remarked
earlier, this quantity might be negative.
In the special node p for the Users vertex, the preliminary processing has made p⃗ total = 0; moreover,

p⃗ table [MAX_N] is the sum of value added, or GNP. We want to switch those fields.
We don’t have to set the tag fields to 1 in the special nodes, because the remaining parts of the arc-

generation algorithm don’t look at those fields.

⟨Make the special nodes invisible if they are omitted, visible otherwise 30 ⟩ ≡
if (omit ≡ 2) node index [ADJ_SEC] = node index [MAX_N] = Λ;
else if (omit ≡ 1) node index [MAX_N] = Λ;
else {
for (k = ADJ_SEC; k; k−−)
if ((p = node index [k]) ̸= Λ) p⃗ table [MAX_N] = p⃗ total − p⃗ table [MAX_N];

p = node index [MAX_N]; /∗ the special node ∗/
p⃗ total = p⃗ table [MAX_N];
p⃗ table [MAX_N] = 0;

}
This code is used in section 25.

§31 GB ECON INDEX 13

31. Index. As usual, we close with an index that shows where the identifiers of gb econ are defined and
used.

a: 29.
ADJ_SEC: 3, 15, 19, 21, 28, 30.
alloc fault : 7.
Arc: 4, 11, 29.
arcs : 25.
Area: 8.
c: 15.
early data fault : 14.
econ : 1, 2, 3, 4, 6, 7, 8.
flow : 2, 3, 5, 11, 25.
gb char : 15, 16.
gb close : 7.
gb free : 7.
gb init rand : 7.
gb new arc : 25.
gb new graph : 10.
gb newline : 15, 16.
gb number : 15, 16.
gb open : 14.
gb recycle : 7.
gb save string : 25.
gb string : 15.
gb trouble code : 6, 7, 14.
gb typed alloc : 14.
gb unif rand : 24.
gb virgin arc : 28.
Graph: 1, 7, 8.
id : 10.
impossible : 25.
init area : 7.
io errors : 7.
j: 8.
jj : 29.
k: 8.
kk : 29.
l: 17.
late data fault : 7.
len : 3, 4, 28.
link : 11, 19, 20.
MAX_N: 3, 9, 11, 12, 14, 15, 16, 19, 25, 26,

27, 29, 30.
n: 7.
name : 25.
new graph : 7, 8, 10, 25.
next : 4, 29.
no room : 10, 14.
node: 11, 12, 13, 14, 19.
node block : 12, 14, 15, 17, 19, 21, 24, 28.
node index : 12, 15, 16, 18, 19, 21, 25, 27, 28,

29, 30.

node struct: 11.
NORM_N: 3, 12, 15, 17, 18.
omit : 2, 3, 4, 7, 9, 10, 17, 30.
p: 13.
panic : 6, 7, 10, 14, 15, 16, 25.
panic code : 6.
pl : 13, 20, 21, 22, 23, 24, 25, 28, 29.
pr : 13, 20, 21, 22, 23, 24, 25, 28, 29.
q: 13.
rchild : 11, 12, 15, 19, 20, 21, 22, 28.
rr : 24.
s: 16.
sector total : 5, 25.
seed : 2, 3, 7, 10, 17, 19.
SIC: 11, 15, 28, 29.
SIC codes : 4, 5, 25.
SIC list : 11, 25, 28, 29.
special : 19, 20.
sprintf : 10.
ss : 24.
stack : 12, 15.
stack ptr : 12, 15.
strcpy : 10, 15.
strlen : 15.
syntax error : 15, 16.
t: 23.
table : 11, 16, 21, 22, 23, 24, 25, 29, 30.
tag : 11, 18, 19, 20, 21, 24, 28, 30.
thresh : 11, 25, 27.
threshold : 2, 3, 7, 9, 10, 27.
tip : 4.
title : 11, 15, 25.
total : 11, 16, 19, 20, 25, 27, 29, 30.
u: 25.
util types : 10.
v: 25.
vert index : 25, 26.
Vertex: 25, 26.
vertices : 25.
working storage : 7, 8, 14.
x: 16.

14 NAMES OF THE SECTIONS GB ECON

⟨Check the parameters and adjust them for defaults 9 ⟩ Used in section 7.

⟨Choose all sectors 18 ⟩ Used in section 17.

⟨Compute individual thresholds for each chosen sector 27 ⟩ Used in section 25.

⟨Compute the T (l) values for subtree p 22 ⟩ Used in section 21.

⟨Determine the n sectors to use in the graph 17 ⟩ Used in section 7.

⟨Grow a random subtree with l leaves 21 ⟩ Used in section 17.

⟨Grow a subtree with l leaves by subdividing largest sectors first 19 ⟩ Used in section 17.

⟨ If the first node on the list is a leaf, delete it and tag it; otherwise replace it by its two children 20 ⟩ Used

in section 19.

⟨Local variables 8, 13 ⟩ Used in section 7.

⟨Make the special nodes invisible if they are omitted, visible otherwise 30 ⟩ Used in section 25.

⟨Private variables 12, 26 ⟩ Used in section 7.

⟨Prune the sectors that are used in macro-sectors, and form the lists of SIC sector codes 28 ⟩ Used in

section 25.

⟨Put the appropriate arcs into the graph 25 ⟩ Used in section 7.

⟨Read econ.dat and note the binary tree structure 14 ⟩ Used in section 7.

⟨Read and store the output coefficients for sector k 16 ⟩ Used in section 14.

⟨Read and store the sector names and SIC numbers 15 ⟩ Used in section 14.

⟨Replace pl and pr by their union, p 29 ⟩ Used in section 28.

⟨Set up a graph with n vertices 10 ⟩ Used in section 7.

⟨Set p⃗ table [2], p⃗ table [3], . . . to convolution of pl and pr table entries 23 ⟩ Used in section 22.

⟨Stochastically determine the number of leaves to grow in each of p’s children 24 ⟩ Used in section 21.

⟨Type declarations 11 ⟩ Used in section 7.

⟨ gb_econ.h 1, 5 ⟩

May 19, 2018 at 02:29

GB ECON
Section Page

Introduction . 1 1
The economic tree . 11 5
Growing a subtree . 17 8
Arcs . 25 11
Index . 31 13

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

