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Important: Before reading GB RAND, please read or at least skim the program for GB GRAPH.

1. Random graphs. This GraphBase module provides two external subroutines called random graph
and random bigraph , which generate graphs in which the arcs or edges have been selected “at random.” A
third subroutine, random lengths , randomizes the lengths of the arcs of a given graph. The performance
of algorithms on such graphs can fruitfully be compared to their performance on the nonrandom graphs
generated by other GraphBase routines.
Before reading this code, the reader should be familiar with the basic data structures and conventions

described in GB GRAPH. The routines in GB GRAPH are loaded together with all GraphBase applications,
and the programs below are typical illustrations of how to use them.

#define random graph r graph /∗ abbreviations for Procrustean external linkage ∗/
#define random bigraph r bigraph
#define random lengths r lengths

⟨ gb_rand.h 1 ⟩ ≡
#define random graph r graph /∗ users of GB RAND should include this header info ∗/
#define random bigraph r bigraph
#define random lengths r lengths
extern Graph ∗random graph ( );
extern Graph ∗random bigraph ( );
extern long random lengths ( );

2. Here is an overview of the file gb_rand.c, the C code for the routines in question.

#include "gb_graph.h" /∗ this header file teaches C about GraphBase ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
⟨Preprocessor definitions ⟩
⟨Private declarations 8 ⟩
⟨ Internal functions 18 ⟩
⟨External functions 5 ⟩

3. The procedure random graph (n,m,multi , self , directed , dist from , dist to ,min len ,max len , seed ) is de-
signed to produce a pseudo-random graph with n vertices andm arcs or edges, using pseudo-random numbers
that depend on seed in a system-independent fashion. The remaining parameters specify a variety of options:

multi ̸= 0 permits duplicate arcs;
self ̸= 0 permits self-loops (arcs from a vertex to itself);
directed ̸= 0 makes the graph directed; otherwise each arc becomes an undirected edge;
dist from and dist to specify probability distributions on the arcs;
min len and max len bound the arc lengths, which will be uniformly distributed between these limits.

If dist from or dist to are Λ, the probability distribution is uniform over vertices; otherwise the dist parameter
points to an array of n nonnegative integers that sum to 230, specifying the respective probabilities (times
230) that each given vertex will appear as the source or destination of the random arcs.
A special option multi = −1 is provided. This acts exactly like multi = 1, except that arcs are not

physically duplicated in computer memory—they are replaced by a single arc whose length is the minimum
of all arcs having a common source and destination.
The vertices are named simply "0", "1", "2", and so on.



2 RANDOM GRAPHS GB RAND §4

4. Examples: random graph (1000, 5000, 0, 0, 0,Λ,Λ, 1, 1, 0) creates a random undirected graph with 1000
vertices and 5000 edges (hence 10000 arcs) of length 1, having no duplicate edges or self-loops. There are(
1000
2

)
= 499500 possible undirected edges on 1000 vertices; hence there are exactly

(
499500
5000

)
possible graphs

meeting these specifications. Every such graph would be equally likely, if random graph had access to an
ideal source of random numbers. The GraphBase programs are designed to be system-independent, so that
identical graphs will be obtained by everybody who asks for random graph (1000, 5000, 0, 0, 0,Λ,Λ, 1, 1, 0).
Equivalent experiments on algorithms for graph manipulation can therefore be performed by researchers in
different parts of the world.
The subroutine call random graph (1000, 5000, 0, 0, 0,Λ,Λ, 1, 1, s) will produce different graphs when the

random seed s varies; however, the graph for any particular value of s will be the same on all computers.
The seed value can be any integer in the range 0 ≤ s < 231.
To get a random directed graph, allowing self-loops and repeated arcs, and with a uniform distribution on

vertices, ask for
random graph (n,m, 1, 1, 1,Λ,Λ, 1, 1, s).

Each of the m arcs of that digraph has probability 1/n2 of being from u to v, for all u and v. If self-loops
are disallowed (by changing ‘1, 1, 1’ to ‘1, 0, 1’), each arc has probability 1/(n2 − n) of being from u to v, for
all u ̸= v.
To get a random directed graph in which vertex k is twice as likely as vertex k + 1 to be the source of an

arc but only half as likely to be the destination of an arc, for all k, try

random graph (31,m, 1, 1, 1, d0 , d1 , 0, 255, s)

where the arrays d0 and d1 have the static declarations

long d0 [31] = {#20000000, #10000000, . . . , 4, 2, 1, 1};
long d1 [31] = {1, 1, 2, 4, . . . , #10000000, #20000000};

then about 1/4 of the arcs will run from 0 to 30, while arcs from 30 to 0 will be extremely rare (occurring with
probability 2−60). Incidentally, the arc lengths in this example will be random bytes, uniformly distributed
between 0 and 255, because min len = 0 and max len = 255.

If we forbid repeated arcs in this example, by setting multi = 0, the effect is to discard all arcs having the
same source and destination as a previous arc, regardless of length. In such a case m had better not be too
large, because the algorithm will keep going until it has found m distinct arcs, and many arcs are quite rare
indeed; they will probably not be found until hundreds of centuries have elapsed.
A random bipartite graph can also be obtained as a special case of random graph ; this case is explained

below.
Semantics: If multi = directed = 0 and self ̸= 0, we have an undirected graph without duplicate edges

but with self-loops permitted. A self-loop then consists of two identical self-arcs, in spite of the fact that
multi = 0.
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5. If the random graph routine encounters a problem, it returns Λ, after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise random graph
returns a pointer to the newly created graph and leaves panic code unchanged. The gb trouble code will be
cleared to zero after random graph has acted.

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }
⟨External functions 5 ⟩ ≡
Graph ∗random graph (n,m,multi , self , directed , dist from , dist to ,min len ,max len , seed )

unsigned long n; /∗ number of vertices desired ∗/
unsigned long m; /∗ number of arcs or edges desired ∗/
long multi ; /∗ allow duplicate arcs? ∗/
long self ; /∗ allow self loops? ∗/
long directed ; /∗ directed graph? ∗/
long ∗dist from ; /∗ distribution of arc sources ∗/
long ∗dist to ; /∗ distribution of arc destinations ∗/
long min len , max len ; /∗ bounds on random lengths ∗/
long seed ; /∗ random number seed ∗/

{ ⟨Local variables 6 ⟩
if (n ≡ 0) panic(bad specs ); /∗ we gotta have a vertex ∗/
if (min len > max len ) panic(very bad specs ); /∗ what are you trying to do? ∗/
if (((unsigned long)(max len ))− ((unsigned long)(min len )) ≥ ((unsigned long) #80000000))
panic(bad specs + 1); /∗ too much range ∗/

⟨Check the distribution parameters 11 ⟩;
gb init rand (seed );
⟨Create a graph with n vertices and no arcs 7 ⟩;
⟨Build tables for nonuniform distributions, if needed 13 ⟩;
for (mm = m; mm ; mm−−) ⟨Add a random arc or a random edge 9 ⟩;

trouble :
if (gb trouble code ) {

gb recycle (new graph );
panic(alloc fault ); /∗ oops, we ran out of memory somewhere back there ∗/

}
gb free (new graph⃗aux data );
return new graph ;

}
See also sections 22 and 24.

This code is used in section 2.

6. ⟨Local variables 6 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by random graph ∗/
long mm ; /∗ the number of arcs or edges we still need to generate ∗/
register long k; /∗ vertex being processed ∗/

See also section 12.

This code is used in section 5.
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7. #define dist code (x) (x ? "dist" : "0")

⟨Create a graph with n vertices and no arcs 7 ⟩ ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room ); /∗ out of memory before we’re even started ∗/
for (k = 0; k < n; k++) {
sprintf (name buffer , "%ld", k);
(new graph⃗vertices + k)⃗ name = gb save string (name buffer );

}
sprintf (new graph⃗ id , "random_graph(%lu,%lu,%d,%d,%d,%s,%s,%ld,%ld,%ld)",

n,m,multi > 0 ? 1 : multi < 0 ? −1 : 0, self ? 1 : 0, directed ? 1 : 0,
dist code (dist from ), dist code (dist to),min len ,max len , seed );

This code is used in section 5.

8. ⟨Private declarations 8 ⟩ ≡
static char name buffer [ ] = "9999999999";

See also sections 14, 17, and 25.

This code is used in section 2.

9. #define rand len (min len ≡ max len ? min len : min len + gb unif rand (max len −min len + 1))

⟨Add a random arc or a random edge 9 ⟩ ≡
{ register Vertex ∗u, ∗v;
repeat :
if (dist from ) ⟨Generate a random vertex u according to dist from 15 ⟩
else u = new graph⃗vertices + gb unif rand (n);
if (dist to) ⟨Generate a random vertex v according to dist to 16 ⟩
else v = new graph⃗vertices + gb unif rand (n);
if (u ≡ v ∧ ¬self ) goto repeat ;
if (multi ≤ 0) ⟨Search for duplicate arcs or edges; goto repeat or done if found 10 ⟩;
if (directed ) gb new arc(u, v, rand len );
else gb new edge (u, v, rand len );

done : ;
}

This code is used in section 5.
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10. When we decrease the length of an existing edge, we use the fact that its two arcs are adjacent in
memory. If u ≡ v in this case, we encounter the first of two mated arcs before seeing the second; hence the
mate of the arc we find is in location a+ 1 when u ≤ v, and in location a− 1 when u > v.

We must exit to location trouble if memory has been exhausted; otherwise there is a danger of an infinite
loop, with dummy arc⃗ next = dummy arc .

⟨Search for duplicate arcs or edges; goto repeat or done if found 10 ⟩ ≡
if (gb trouble code ) goto trouble ;
else { register Arc ∗a;
long len ; /∗ length of new arc or edge being combined with previous ∗/
for (a = u⃗ arcs ; a; a = a⃗ next )
if (a⃗ tip ≡ v)
if (multi ≡ 0) goto repeat ; /∗ reject a duplicate arc ∗/
else { /∗ multi < 0 ∗/
len = rand len ;
if (len < a⃗ len ) {

a⃗ len = len ;
if (¬directed ) {
if (u ≤ v) (a+ 1)⃗ len = len ;
else (a− 1)⃗ len = len ;

}
}
goto done ;

}
}

This code is used in section 9.
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11. Nonuniform random number generation. The random graph procedure is complete except for
the parts that handle general distributions dist from and dist to . Before attempting to generate those
distributions, we had better check them to make sure that the specifications are well formed; otherwise
disaster might ensue later. This part of the program is easy.

⟨Check the distribution parameters 11 ⟩ ≡
{ register long acc ; /∗ sum of probabilities ∗/
register long ∗p; /∗ pointer to current probability of interest ∗/
if (dist from ) {
for (acc = 0, p = dist from ; p < dist from + n; p++) {
if (∗p < 0) panic(invalid operand ); /∗ dist from contains a negative entry ∗/
if (∗p > #40000000− acc) panic(invalid operand + 1); /∗ probability too high ∗/
acc += ∗p;

}
if (acc ̸= #40000000) panic(invalid operand + 2); /∗ dist from table doesn’t sum to 230 ∗/

}
if (dist to) {

for (acc = 0, p = dist to ; p < dist to + n; p++) {
if (∗p < 0) panic(invalid operand + 5); /∗ dist to contains a negative entry ∗/
if (∗p > #40000000− acc) panic(invalid operand + 6); /∗ probability too high ∗/
acc += ∗p;

}
if (acc ̸= #40000000) panic(invalid operand + 7); /∗ dist to table doesn’t sum to 230 ∗/

}
}

This code is used in section 5.

12. We generate nonuniform distributions by using Walker’s alias method (see, for example, Seminumerical
Algorithms, second edition, exercise 3.4.1–7). Walker’s method involves setting up “magic” tables of length
nn , where nn is the smallest power of 2 that is ≥ n.

format magic entry int

⟨Local variables 6 ⟩ +≡
long nn = 1; /∗ this will be increased to 2⌈lgn⌉ ∗/
long kk = 31; /∗ this will be decreased to 31− ⌈lg n⌉ ∗/
magic entry ∗from table , ∗to table ; /∗ alias tables ∗/

13. ⟨Build tables for nonuniform distributions, if needed 13 ⟩ ≡
{
if (dist from ) {

while (nn < n) nn += nn , kk −−;
from table = walker (n,nn , dist from ,new graph );

}
if (dist to) {
while (nn < n) nn += nn , kk −−;
to table = walker (n,nn , dist to ,new graph );

}
if (gb trouble code ) {
gb recycle (new graph );
panic(alloc fault ); /∗ oops, we ran out of memory somewhere back there ∗/

}
}

This code is used in section 5.
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14. ⟨Private declarations 8 ⟩ +≡
typedef struct {
long prob ; /∗ a probability, multiplied by 231 and translated ∗/
long inx ; /∗ index that might be selected ∗/

} magic entry;

15. Once the magic tables have been set up, we can generate nonuniform vertices by using the following
code:

⟨Generate a random vertex u according to dist from 15 ⟩ ≡
{ register magic entry ∗magic ;
register long uu = gb next rand ( ); /∗ uniform random number ∗/
k = uu ≫ kk ;
magic = from table + k;
if (uu ≤ magic⃗ prob) u = new graph⃗vertices + k;
else u = new graph⃗vertices +magic⃗ inx ;

}
This code is used in section 9.

16. ⟨Generate a random vertex v according to dist to 16 ⟩ ≡
{ register magic entry ∗magic ;
register long uu = gb next rand ( ); /∗ uniform random number ∗/
k = uu ≫ kk ;
magic = to table + k;
if (uu ≤ magic⃗ prob) v = new graph⃗vertices + k;
else v = new graph⃗vertices +magic⃗ inx ;

}
This code is used in section 9.
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17. So all we have to do is set up those magic tables. If uu is a uniform random integer between 0 and 231−1,
the index k = uu ≫ kk is a uniform random integer between 0 and nn − 1, because of the relation between
nn and kk . Once k is computed, the code above selects vertex k with probability (p + 1 − (k ≪ kk ))/231,
where p = magic⃗ prob and magic is the kth element of the magic table; otherwise the code selects vertex
magic⃗ inx . The trick is to set things up so that each vertex is selected with the proper overall probability.
Let’s imagine that the given distribution vector has length nn , instead of n, by extending it if necessary

with zeroes. Then the average entry among these nn integers is exactly t = 230/nn . If some entry, say
entry i, exceeds t, there must be another entry that’s less than t, say entry j. We can set the jth entry of
the magic table so that its prob field selects vertex j with the correct probability, and so that its inx field
equals i. Then we are selecting vertex i with a certain residual probability; so we subtract that residual
from i’s present probability, and repeat the process with vertex j eliminated. The average of the remaining
entries is still t, so we can repeat this procedure until all remaining entries are exactly equal to t. The rest
is easy.
During the calculation, we maintain two linked lists of (prob , inx ) pairs. The hi list contains entries with

prob > t, and the lo list contains the rest. During this part of the computation we call these list elements
‘nodes’, and we use the field names key and j instead of prob and inx .

⟨Private declarations 8 ⟩ +≡
typedef struct node struct {
long key ; /∗ a numeric quantity ∗/
struct node struct ∗link ; /∗ the next node on the list ∗/
long j; /∗ a vertex number to be selected with probability key/230 ∗/

} node;
static Area temp nodes ; /∗ nodes will be allocated in this area ∗/
static node ∗base node ; /∗ beginning of a block of nodes ∗/

18. ⟨ Internal functions 18 ⟩ ≡
static magic entry ∗walker (n,nn , dist , g)

long n; /∗ length of dist vector ∗/
long nn ; /∗ 2⌈lgn⌉ ∗/
register long ∗dist ; /∗ start of distribution table, which sums to 230 ∗/
Graph ∗g; /∗ tables will be allocated for this graph’s vertices ∗/

{ magic entry ∗table ; /∗ this will be the magic table we compute ∗/
long t; /∗ average key value ∗/
node ∗hi = Λ, ∗lo = Λ; /∗ nodes not yet included in magic table ∗/
register node ∗p, ∗q; /∗ pointer variables for list manipulation ∗/
base node = gb typed alloc(nn ,node, temp nodes );
table = gb typed alloc(nn ,magic entry, g⃗ aux data );
if (¬gb trouble code ) {

⟨ Initialize the hi and lo lists 19 ⟩;
while (hi ) ⟨Remove a lo element and match it with a hi element; deduct the residual probability

from that hi element 20 ⟩;
while (lo) ⟨Remove a lo element of key value t 21 ⟩;

}
gb free (temp nodes );
return table ; /∗ if gb trouble code is nonzero, the table is empty ∗/

}
This code is used in section 2.
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19. ⟨ Initialize the hi and lo lists 19 ⟩ ≡
t = #40000000/nn ; /∗ this division is exact ∗/
p = base node ;
while (nn > n) {
p⃗ key = 0;
p⃗ link = lo ;
p⃗ j = −−nn ;
lo = p++;

}
for (dist = dist + n− 1; n > 0; dist −−, p++) {
p⃗ key = ∗dist ;
p⃗ j = −−n;
if (∗dist > t) p⃗ link = hi , hi = p;
else p⃗ link = lo , lo = p;

}
This code is used in section 18.

20. When we change the scale factor from 230 to 231, we need to be careful lest integer overflow occur.
The introduction of register x into this code removes the risk.

⟨Remove a lo element and match it with a hi element; deduct the residual probability from that
hi element 20 ⟩ ≡

{ register magic entry ∗r;
register long x;

p = hi , hi = p⃗ link ;
q = lo , lo = q⃗ link ;
r = table + q⃗ j;
x = t ∗ q⃗ j + q⃗ key − 1;
r⃗ prob = x+ x+ 1;
r⃗ inx = p⃗ j;
/∗ we have just given q⃗ key units of probability to vertex q⃗ j, and t− q⃗ key units to vertex p⃗ j ∗/

if ((p⃗ key −= t− q⃗ key ) > t) p⃗ link = hi , hi = p;
else p⃗ link = lo , lo = p;

}
This code is used in section 18.

21. When all remaining entries have the average probability, the inx component need not be set, because
it will never be used.

⟨Remove a lo element of key value t 21 ⟩ ≡
{ register magic entry ∗r;
register long x;

q = lo , lo = q⃗ link ;
r = table + q⃗ j;
x = t ∗ q⃗ j + t− 1;
r⃗ prob = x+ x+ 1; /∗ that’s t units of probability for vertex q⃗ j ∗/

}
This code is used in section 18.
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22. Random bipartite graphs. The procedure call

random bigraph (n1 ,n2 ,m,multi , dist1 , dist2 ,min len ,max len , seed )

is designed to produce a pseudo-random bipartite graph with n1 vertices in one part and n2 in the other,
having m edges. The remaining parameters multi , dist1 , dist2 , min len , max len , and seed have the same
meaning as the analogous parameters of random graph .

In fact, random bigraph does its work by reducing its parameters to a special case of random graph .
Almost all that needs to be done is to pad dist1 with n2 trailing zeroes and dist2 with n1 leading zeroes.
The only slightly tricky part occurs when dist1 and/or dist2 are null, since non-null distribution vectors
summing exactly to 230 must then be fabricated.

⟨External functions 5 ⟩ +≡
Graph ∗random bigraph (n1 ,n2 ,m,multi , dist1 , dist2 ,min len ,max len , seed )

unsigned long n1 , n2 ; /∗ number of vertices desired in each part ∗/
unsigned long m; /∗ number of edges desired ∗/
long multi ; /∗ allow duplicate edges? ∗/
long ∗dist1 , ∗dist2 ; /∗ distribution of edge endpoints ∗/
long min len , max len ; /∗ bounds on random lengths ∗/
long seed ; /∗ random number seed ∗/

{ unsigned long n = n1 + n2 ; /∗ total number of vertices ∗/
Area new dists ;
long ∗dist from , ∗dist to ;
Graph ∗new graph ;

init area (new dists );
if (n1 ≡ 0 ∨ n2 ≡ 0) panic(bad specs ); /∗ illegal options ∗/
if (min len > max len ) panic(very bad specs ); /∗ what are you trying to do? ∗/
if (((unsigned long)(max len ))− ((unsigned long)(min len )) ≥ ((unsigned long) #80000000))
panic(bad specs + 1); /∗ too much range ∗/

dist from = gb typed alloc(n, long,new dists );
dist to = gb typed alloc(n, long,new dists );
if (gb trouble code ) {
gb free (new dists );
panic(no room + 2); /∗ no room for auxiliary distribution tables ∗/

}
⟨Compute the entries of dist from and dist to 23 ⟩;
new graph = random graph (n,m,multi , 0L, 0L, dist from , dist to ,min len ,max len , seed );
sprintf (new graph⃗ id , "random_bigraph(%lu,%lu,%lu,%d,%s,%s,%ld,%ld,%ld)",

n1 ,n2 ,m,multi > 0 ? 1 : multi < 0 ? −1 : 0, dist code (dist1 ), dist code (dist2 ),
min len ,max len , seed );

mark bipartite (new graph ,n1 );
gb free (new dists );
return new graph ;

}
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23. The relevant identity we need here is the replicative law for the floor function:⌊x
n

⌋
+

⌊
x+ 1

n

⌋
+ · · ·+

⌊
x+ n− 1

n

⌋
= ⌊x⌋ .

⟨Compute the entries of dist from and dist to 23 ⟩ ≡
{ register long ∗p, ∗q; /∗ traversers of the dists ∗/
register long k; /∗ vertex count ∗/
p = dist1 ;
q = dist from ;
if (p)

while (p < dist1 + n1 ) ∗q++ = ∗p++;
else
for (k = 0; k < n1 ; k++) ∗q++ = (#40000000+ k)/n1 ;

p = dist2 ;
q = dist to + n1 ;
if (p)

while (p < dist2 + n2 ) ∗q++ = ∗p++;
else
for (k = 0; k < n2 ; k++) ∗q++ = (#40000000+ k)/n2 ;

}
This code is used in section 22.
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24. Random lengths. The subroutine call

random lengths (g, directed ,min len ,max len , dist , seed )

takes an existing graph and assigns new lengths to each of its arcs. If dist = Λ, the lengths will be uniformly
distributed between min len and max len inclusive; otherwise dist should be a probability distribution vector
of length max len −min len + 1, like those in random graph .
If directed = 0, pairs of arcs u → v and v → u will be regarded as a single edge, both arcs receiving the

same length.
The procedure returns a nonzero value if something goes wrong; in that case, graph g will not have been

changed.
Alias tables for generating nonuniform random lengths will survive in g⃗ aux data .

⟨External functions 5 ⟩ +≡
long random lengths (g, directed ,min len ,max len , dist , seed )

Graph ∗g; /∗ graph whose lengths will be randomized ∗/
long directed ; /∗ is it directed? ∗/
long min len , max len ; /∗ bounds on random lengths ∗/
long ∗dist ; /∗ distribution of lengths ∗/
long seed ; /∗ random number seed ∗/

{ register Vertex ∗u, ∗v; /∗ current vertices of interest ∗/
register Arc ∗a; /∗ current arc of interest ∗/
long nn = 1, kk = 31; /∗ variables for nonuniform generation ∗/
magic entry ∗dist table ; /∗ alias table for nonuniform generation ∗/
if (g ≡ Λ) return missing operand ; /∗ where is g? ∗/
gb init rand (seed );
if (min len > max len ) return very bad specs ; /∗ what are you trying to do? ∗/
if (((unsigned long)(max len ))− ((unsigned long)(min len )) ≥ ((unsigned long) #80000000))
return bad specs ; /∗ too much range ∗/

⟨Check dist for validity, and set up the dist table 26 ⟩;
sprintf (buffer , ",%d,%ld,%ld,%s,%ld)", directed ? 1 : 0,

min len ,max len , dist code (dist ), seed );
make compound id (g, "random_lengths(", g, buffer );
⟨Run through all arcs and assign new lengths 27 ⟩;
return 0;

}

25. ⟨Private declarations 8 ⟩ +≡
static char buffer [ ] = "1,−1000000001,−1000000000,dist,1000000000)";
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26. ⟨Check dist for validity, and set up the dist table 26 ⟩ ≡
if (dist ) { register long acc ; /∗ sum of probabilities ∗/
register long ∗p; /∗ pointer to current probability of interest ∗/
register long n = max len −min len + 1;

for (acc = 0, p = dist ; p < dist + n; p++) {
if (∗p < 0) return −1; /∗ negative probability ∗/
if (∗p > #40000000− acc) return 1; /∗ probability too high ∗/
acc += ∗p;

}
if (acc ̸= #40000000) return 2; /∗ probabilities don’t sum to 1 ∗/
while (nn < n) nn += nn , kk −−;
dist table = walker (n,nn , dist , g);
if (gb trouble code ) {
gb trouble code = 0;
return alloc fault ; /∗ not enough room to generate the magic tables ∗/

}
}

This code is used in section 24.

27. ⟨Run through all arcs and assign new lengths 27 ⟩ ≡
for (u = g⃗ vertices ; u < g⃗ vertices + g⃗ n; u++)
for (a = u⃗ arcs ; a; a = a⃗ next ) {
v = a⃗ tip ;
if (directed ≡ 0 ∧ u > v) a⃗ len = (a− 1)⃗ len ;
else { register long len ; /∗ a random length ∗/
if (dist ≡ 0) len = rand len ;
else { long uu = gb next rand ( );
long k = uu ≫ kk ;
magic entry ∗magic = dist table + k;

if (uu ≤ magic⃗ prob) len = min len + k;
else len = min len +magic⃗ inx ;

}
a⃗ len = len ;
if (directed ≡ 0 ∧ u ≡ v ∧ a⃗ next ≡ a+ 1) (++a)⃗ len = len ;

}
}

This code is used in section 24.
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28. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 10, 24.
acc : 11, 26.
alloc fault : 5, 13, 26.
Arc: 10, 24.
arcs : 10, 27.
Area: 17, 22.
aux data : 5, 18, 24.
bad specs : 5, 22, 24.
base node : 17, 18, 19.
buffer : 24, 25.
directed : 3, 4, 5, 7, 9, 10, 24, 27.
dist : 18, 19, 24, 26, 27.
dist code : 7, 22, 24.
dist from : 3, 5, 7, 9, 11, 13, 22, 23.
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⟨Add a random arc or a random edge 9 ⟩ Used in section 5.

⟨Build tables for nonuniform distributions, if needed 13 ⟩ Used in section 5.

⟨Check the distribution parameters 11 ⟩ Used in section 5.

⟨Check dist for validity, and set up the dist table 26 ⟩ Used in section 24.

⟨Compute the entries of dist from and dist to 23 ⟩ Used in section 22.

⟨Create a graph with n vertices and no arcs 7 ⟩ Used in section 5.

⟨External functions 5, 22, 24 ⟩ Used in section 2.

⟨Generate a random vertex u according to dist from 15 ⟩ Used in section 9.

⟨Generate a random vertex v according to dist to 16 ⟩ Used in section 9.

⟨ Initialize the hi and lo lists 19 ⟩ Used in section 18.

⟨ Internal functions 18 ⟩ Used in section 2.

⟨Local variables 6, 12 ⟩ Used in section 5.

⟨Private declarations 8, 14, 17, 25 ⟩ Used in section 2.

⟨Remove a lo element and match it with a hi element; deduct the residual probability from that
hi element 20 ⟩ Used in section 18.

⟨Remove a lo element of key value t 21 ⟩ Used in section 18.

⟨Run through all arcs and assign new lengths 27 ⟩ Used in section 24.

⟨Search for duplicate arcs or edges; goto repeat or done if found 10 ⟩ Used in section 9.

⟨ gb_rand.h 1 ⟩
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