
§1 GB LISA INTRODUCTION 1

Important: Before reading GB LISA, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the lisa subroutine, which creates rectangular ma-
trices of data based on Leonardo da Vinci’s Gioconda (aka Mona Lisa). It also contains the plane lisa
subroutine, which constructs undirected planar graphs based on lisa , and the bi lisa subroutine, which con-
structs undirected bipartite graphs. Another example of the use of lisa can be found in the demo program
ASSIGN LISA.

#define plane lisa p lisa /∗ abbreviation for Procrustean external linkage ∗/
⟨ gb_lisa.h 1 ⟩ ≡
#define plane lisa p lisa
extern long ∗lisa ();
extern Graph ∗plane lisa ();
extern Graph ∗bi lisa ();

See also sections 3 and 25.

2. The subroutine call lisa (m,n, d,m0 ,m1 ,n0 ,n1 , d0 , d1 , area) constructs an m × n matrix of integers
in the range [0 . . d], based on the information in lisa.dat. Storage space for the matrix is allocated in
the memory area called area , using the normal GraphBase conventions explained in GB GRAPH. The entries
of the matrix can be regarded as pixel data, with 0 representing black and d representing white, and with
intermediate values representing shades of gray.
The data in lisa.dat has 360 rows and 250 columns. The rows are numbered 0 to 359 from top to

bottom, and the columns are numbered 0 to 249 from left to right. The output of lisa is generated from a
rectangular section of the picture consisting of m1 − m0 rows and n1 − n0 columns; more precisely, lisa
uses the data in positions (k, l) for m0 ≤ k < m1 and n0 ≤ l < n1 .
One way to understand the process of mapping M = m1 −m0 rows and N = n1 − n0 columns of input

into m rows and n columns of output is to imagine a giant matrix of mM rows and nN columns in which
the original input data has been replicated as an M × N array of submatrices of size m × n; each of the
submatrices contains mn identical pixel values. We can also regard the giant matrix as an m × n array of
submatrices of size M ×N . The pixel values to be output are obtained by averaging the MN pixel values
in the submatrices of this second interpretation.
More precisely, the output pixel value in a given row and column is obtained in two steps. First we sum the

MN entries in the corresponding submatrix of the giant matrix, obtaining a value D between 0 and 255MN .
Then we scale the value D linearly into the desired final range [0 . . d] by setting the result to 0 if D < d0 ,
to d if D ≥ d1 , and to ⌊d(D − d0)/(d1 − d0)⌋ if d0 ≤ D < d1 .

#define MAX_M 360 /∗ the total number of rows of input data ∗/
#define MAX_N 250 /∗ the total number of columns of input data ∗/
#define MAX_D 255 /∗ maximum pixel value in the input data ∗/

2 INTRODUCTION GB LISA §3

3. Default parameter values are automatically substituted when m, n, d, m1 , n1 , and/or d1 are given
as 0: If m1 = 0 or m1 > 360, m1 is changed to 360; if n1 = 0 or n1 > 250, n1 is changed to 250. Then
if m is zero, it is changed to m1 − m0 ; if n is zero, it is changed to n1 − n0 . If d is zero, it is changed
to 255. If d1 is zero, it is changed to 255(m1 −m0)(n1 − n0). After these substitutions have been made,
the parameters must satisfy

m0 < m1 , n0 < n1 , and d0 < d1 .

Examples: The call lisa pix = lisa (0, 0, 0, 0, 0, 0, 0, 0, 0, area) is equivalent to the call lisa pix = lisa (360, 250, 255, 0, 360, 0, 250, 0, 255∗
360 ∗ 250, area); this special case delivers the original lisa.dat data as a 360× 250 array of integers in the
range [0 . . 255]. You can access the pixel in row k and column l by writing

∗(lisa pix + n ∗ k + l) ,

where n in this case is 250. A square array extracted from the top part of the picture, leaving out Mona’s
hands at the bottom, can be obtained by calling lisa (250, 250, 255, 0, 250, 0, 250, 0, 0, area).

The call lisa (36, 25, 25500, 0, 0, 0, 0, 0, 0, area) gives a 36× 25 array of pixel values in the range [0 . . 25500],
obtained by summing 10× 10 subsquares of the original data.
The call lisa (100, 100, 100, 0, 0, 0, 0, 0, 0, area) gives a 100× 100 array of pixel values in the range [0 . . 100];

in this case the original data is effectively broken into subpixels and averaged appropriately. Notice that
each output pixel in this example comes from 3.6 input rows and 2.5 input columns; therefore the image is
being distorted (compressed vertically). However, our GraphBase applications are generally interested more
in combinatorial test data, not in images per se. If (m1 − m0)/m = (n1 − n0)/n, the output of lisa will
represent “square pixels.” But if (m1 −m0)/m < (n1 − n0)/n, a halftone generated from the output will
be compressed in the horizontal dimension; if (m1 − m0)/m > (n1 − n0)/n, it will be compressed in the
vertical dimension.
If you want to reduce the original image to binary data, with the value 0 wherever the original pixels are less

than some threshold value t and the value 1 whenever they are t or more, call lisa (m,n, 1,m0 ,m1 ,n0 ,n1 ,
0, t ∗ (m1 −m0) ∗ (n1 − n0), area).
The subroutine call lisa (1000, 1000, 255, 0, 250, 0, 250, 0, 0, area) produces a million pixels from the upper

part of the original image. This matrix contains more entries than the original data in lisa.dat, but of
course it is not any more accurate; it has simply been obtained by linear interpolation—in fact, by replicating
the original data in 4× 4 subarrays.
Mona Lisa’s famous smile appears in the 16 × 32 subarray defined by m0 = 94, m1 = 110, n0 = 97,

n1 = 129. The smile macro makes this easily accessible. (See also eyes .)
A string lisa id is constructed, showing the actual parameter values used by lisa after defaults have been

supplied. The area parameter is omitted from this string.

⟨ gb_lisa.h 1 ⟩ +≡
#define smile m0 = 94,m1 = 110,n0 = 97,n1 = 129 /∗ 16× 32 ∗/
#define eyes m0 = 61,m1 = 80,n0 = 91,n1 = 140 /∗ 20× 50 ∗/
extern char lisa id [];

4. ⟨Global variables 4 ⟩ ≡
char lisa id [] = "lisa(360,250,9999999999,359,360,249,250,9999999999,9999999999)";

This code is used in section 6.

5. If the lisa routine encounters a problem, it returns Λ (NULL), after putting a nonzero number into the
external variable panic code . This code number identifies the type of failure. Otherwise lisa returns a pointer
to the newly created array. (The external variable panic code is defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }

§6 GB LISA INTRODUCTION 3

6. The C file gb_lisa.c begins as follows. (Other subroutines come later.)

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
⟨Preprocessor definitions ⟩
⟨Global variables 4 ⟩
⟨Private variables 16 ⟩
⟨Private subroutines 15 ⟩
long ∗lisa (m,n, d,m0 ,m1 ,n0 ,n1 , d0 , d1 , area)

unsigned long m, n; /∗ number of rows and columns desired ∗/
unsigned long d; /∗ maximum pixel value desired ∗/
unsigned long m0 , m1 ; /∗ input will be from rows [m0 . .m1) ∗/
unsigned long n0 , n1 ; /∗ and from columns [n0 . .n1) ∗/
unsigned long d0 , d1 ; /∗ lower and upper threshold of raw pixel scores ∗/
Area area ; /∗ where to allocate the matrix that will be output ∗/

{ ⟨Local variables for lisa 7 ⟩
⟨Check the parameters and adjust them for defaults 8 ⟩;
⟨Allocate the matrix 9 ⟩;
⟨Read lisa.dat and map it to the desired output form 10 ⟩;
return matx ;

}

7. ⟨Local variables for lisa 7 ⟩ ≡
long ∗matx = Λ; /∗ the matrix constructed by lisa ∗/
register long k, l; /∗ the current row and column of output ∗/
register long i, j; /∗ all-purpose indices ∗/
long cap M , cap N ; /∗ m1 −m0 and n1 − n0 , dimensions of the input ∗/
long cap D ; /∗ d1 − d0 , scale factor ∗/

See also sections 11 and 14.

This code is used in section 6.

8. ⟨Check the parameters and adjust them for defaults 8 ⟩ ≡
if (m1 ≡ 0 ∨m1 > MAX_M) m1 = MAX_M;
if (m1 ≤ m0) panic(bad specs + 1); /∗ m0 must be less than m1 ∗/
if (n1 ≡ 0 ∨ n1 > MAX_N) n1 = MAX_N;
if (n1 ≤ n0) panic(bad specs + 2); /∗ n0 must be less than n1 ∗/
cap M = m1 −m0 ; cap N = n1 − n0 ;
if (m ≡ 0) m = cap M ;
if (n ≡ 0) n = cap N ;
if (d ≡ 0) d = MAX_D;
if (d1 ≡ 0) d1 = MAX_D ∗ cap M ∗ cap N ;
if (d1 ≤ d0) panic(bad specs + 3); /∗ d0 must be less than d1 ∗/
if (d1 ≥ #80000000) panic(bad specs + 4); /∗ d1 must be less than 231 ∗/
cap D = d1 − d0 ;
sprintf (lisa id , "lisa(%lu,%lu,%lu,%lu,%lu,%lu,%lu,%lu,%lu)",m, n, d,m0 ,m1 ,n0 ,n1 , d0 , d1);

This code is used in section 6.

9. ⟨Allocate the matrix 9 ⟩ ≡
matx = gb typed alloc(m ∗ n, long, area);
if (gb trouble code) panic(no room + 1); /∗ no room for the output data ∗/

This code is used in section 6.

4 INTRODUCTION GB LISA §10

10. ⟨Read lisa.dat and map it to the desired output form 10 ⟩ ≡
⟨Open the data file, skipping unwanted rows at the beginning 19 ⟩;
⟨Generate the m rows of output 13 ⟩;
⟨Close the data file, skipping unwanted rows at the end 20 ⟩;

This code is used in section 6.

§11 GB LISA ELEMENTARY IMAGE PROCESSING 5

11. Elementary image processing. As mentioned in the introduction, we can visualize the input as
a giant mM × nN matrix, into which an M × N image is placed by replication of pixel values, and from
which an m×n image is derived by summation of pixel values and subsequent scaling. Here M = m1 −m0
and N = n1 − n0 .
Let (κ, λ) be a position in the giant matrix, where 0 ≤ κ < mM and 0 ≤ λ < nN . The corresponding

indices of the input image are then
(
m0 + ⌊κ/m⌋,n0 + ⌊λ/n⌋

)
, and the corresponding indices of the output

image are
(
⌊κ/M⌋, ⌊λ/N⌋

)
. Our main job is to compute the sum of all pixel values that lie in each given row k

and column l of the output image. Many elements are repeated in the sum, so we want to use multiplication
instead of simple addition whenever possible.
For example, let’s consider the inner loop first, the loop on l and λ. Suppose n = 3, and suppose the input

pixels in the current row of interest are ⟨a0, . . . , aN−1⟩. Then if N = 3, we want to compute the output
pixels ⟨3a0, 3a1, 3a2⟩; if N = 4, we want to compute ⟨3a0 + a1, 2a1 + 2a2, a2 + 3a3⟩; if N = 2, we want to
compute ⟨2a0, a0 + a1, 2a1⟩. The logic for doing this computation with the proper timing can be expressed
conveniently in terms of four local variables:

⟨Local variables for lisa 7 ⟩ +≡
long ∗cur pix ; /∗ current position within in row ∗/
long lambda ; /∗ right boundary in giant for the input pixel in cur pix ∗/
long lam ; /∗ the first giant column not yet used in the current row ∗/
long next lam ; /∗ right boundary in giant for the output pixel in column l ∗/

12. ⟨Process one row of pixel sums, multiplying them by f 12 ⟩ ≡
lambda = n; cur pix = in row + n0 ;
for (l = lam = 0; l < n; l++) { register long sum = 0;

next lam = lam + cap N ;
do { register long nl ; /∗ giant column where something new might happen ∗/
if (lam ≥ lambda) cur pix ++, lambda += n;
if (lambda < next lam) nl = lambda ;
else nl = next lam ;
sum += (nl − lam) ∗ (∗cur pix);
lam = nl ;

} while (lam < next lam);
∗(out row + l) += f ∗ sum ;

}
This code is used in section 13.

6 ELEMENTARY IMAGE PROCESSING GB LISA §13

13. The outer loop (on k and κ) is similar but slightly more complicated, because it deals with a vector of
sums instead of a single sum and because it must invoke the input routine when we’re done with a row of
input data.

⟨Generate the m rows of output 13 ⟩ ≡
kappa = 0;
out row = matx ;
for (k = kap = 0; k < m; k++) {
for (l = 0; l < n; l++) ∗(out row + l) = 0; /∗ clear the vector of sums ∗/
next kap = kap + cap M ;
do { register long nk ; /∗ giant row where something new might happen ∗/

if (kap ≥ kappa) {
⟨Read a row of input into in row 21 ⟩;
kappa += m;

}
if (kappa < next kap) nk = kappa ;
else nk = next kap ;
f = nk − kap ;
⟨Process one row of pixel sums, multiplying them by f 12 ⟩;
kap = nk ;

} while (kap < next kap);
for (l = 0; l < n; l++, out row ++) /∗ note that out row will advance by n ∗/
⟨Scale the sum found in ∗out row 18 ⟩;

}
This code is used in section 10.

14. ⟨Local variables for lisa 7 ⟩ +≡
long kappa ; /∗ bottom boundary in giant for the input pixels in in row ∗/
long kap ; /∗ the first giant row not yet used ∗/
long next kap ; /∗ bottom boundary in giant for the output pixel in row k ∗/
long f ; /∗ factor by which current input sums should be replicated ∗/
long ∗out row ; /∗ current position in matx ∗/

§15 GB LISA INTEGER SCALING 7

15. Integer scaling. Here’s a general-purpose routine to compute ⌊na/b⌋ exactly without risking integer
overflow, given integers n ≥ 0 and 0 < a ≤ b. The idea is to solve the problem first for n/2, if n is too large.
We are careful to precompute values so that integer overflow cannot occur when b is very large.

#define el gordo #7fffffff /∗ 231 − 1, the largest single-precision long ∗/
⟨Private subroutines 15 ⟩ ≡

static long na over b(n, a, b)
long n, a, b;

{ long nmax = el gordo/a; /∗ the largest n such that na doesn’t overflow ∗/
register long r, k, q, br ;
long a thresh , b thresh ;

if (n ≤ nmax) return (n ∗ a)/b;
a thresh = b− a;
b thresh = (b+ 1) ≫ 1; /∗ ⌈b/2⌉ ∗/
k = 0;
do { bit [k] = n& 1; /∗ save the least significant bit of n ∗/
n ≫= 1; /∗ and shift it out ∗/
k++;

} while (n > nmax);
r = n ∗ a; q = r/b; r = r − q ∗ b;
⟨Maintain quotient q and remainder r while increasing n back to its original value

2kn+ (bit [k − 1] . . . bit [0])2 17 ⟩;
return q;

}
See also section 32.

This code is used in section 6.

16. ⟨Private variables 16 ⟩ ≡
static long bit [30]; /∗ bits shifted out of n ∗/

See also section 22.

This code is used in section 6.

17. ⟨Maintain quotient q and remainder r while increasing n back to its original value
2kn+ (bit [k − 1] . . . bit [0])2 17 ⟩ ≡

do { k−−; q ≪= 1;
if (r < b thresh) r ≪= 1;
else q++, br = (b− r) ≪ 1, r = b− br ;
if (bit [k]) {
if (r < a thresh) r += a;
else q++, r −= a thresh ;

}
} while (k);

This code is used in section 15.

18. ⟨Scale the sum found in ∗out row 18 ⟩ ≡
if (∗out row ≤ d0) ∗out row = 0;
else if (∗out row ≥ d1) ∗out row = d;
else ∗out row = na over b(d, ∗out row − d0 , cap D);

This code is used in section 13.

8 INPUT DATA FORMAT GB LISA §19

19. Input data format. The file lisa.dat contains 360 rows of pixel data, and each row appears on
five consecutive lines of the file. The first four lines contain the data for 60 pixels; each sequence of four
pixels is represented by five radix-85 digits, using the icode mapping of GB IO. The fifth and final line of
each row contains 4 + 4 + 2 = 10 more pixels, represented as 5 + 5 + 3 radix-85 digits.

⟨Open the data file, skipping unwanted rows at the beginning 19 ⟩ ≡
if (gb open ("lisa.dat") ̸= 0) panic(early data fault);

/∗ couldn’t open the file; io errors tells why ∗/
for (i = 0; i < m0 ; i++)
for (j = 0; j < 5; j++) gb newline (); /∗ ignore one row of data ∗/

This code is used in section 10.

20. ⟨Close the data file, skipping unwanted rows at the end 20 ⟩ ≡
for (i = m1 ; i < MAX_M; i++)
for (j = 0; j < 5; j++) gb newline (); /∗ ignore one row of data ∗/

if (gb close () ̸= 0) panic(late data fault); /∗ checksum or other failure in data file; see io errors ∗/
This code is used in section 10.

21. ⟨Read a row of input into in row 21 ⟩ ≡
{ register long dd ;

for (j = 15, cur pix = &in row [0]; ; cur pix += 4) {
dd = gb digit (85); dd = dd ∗ 85 + gb digit (85); dd = dd ∗ 85 + gb digit (85);
if (cur pix ≡ &in row [MAX_N − 2]) break;
dd = dd ∗ 85 + gb digit (85); dd = dd ∗ 85 + gb digit (85);
∗(cur pix + 3) = dd & #ff; dd = (dd ≫ 8) & #ffffff;
∗(cur pix + 2) = dd & #ff; dd ≫= 8;
∗(cur pix + 1) = dd & #ff; ∗cur pix = dd ≫ 8;
if (−−j ≡ 0) gb newline (), j = 15;

}
∗(cur pix + 1) = dd & #ff; ∗cur pix = dd ≫ 8; gb newline ();

}
This code is used in section 13.

22. ⟨Private variables 16 ⟩ +≡
static long in row [MAX_N];

§23 GB LISA PLANAR GRAPHS 9

23. Planar graphs. We can obtain a large family of planar graphs based on digitizations of Mona Lisa
by using the following simple scheme: Each matrix of pixels defines a set of connected regions containing
pixels of the same value. (Two pixels are considered adjacent if they share an edge.) These connected regions
are taken to be vertices of an undirected graph; two vertices are adjacent if the corresponding regions have
at least one pixel edge in common.
We can also state the construction another way. If we take any planar graph and collapse two adjacent

vertices, we obtain another planar graph. Suppose we start with the planar graph having mn vertices [k, l]
for 0 ≤ k < m and 0 ≤ l < n, where [k, l] is adjacent to [k, l − 1] when l > 0 and to [k − 1, l] when k > 0.
Then we can attach pixel values to each vertex, after which we can repeatedly collapse adjacent vertices
whose pixel values are equal. The resulting planar graph is the same as the graph of connected regions that
was described in the previous paragraph.
The subroutine call plane lisa (m,n, d,m0 ,m1 ,n0 ,n1 , d0 , d1) constructs the planar graph associated

with the digitization produced by lisa . The description of lisa , given earlier, explains the significance of
parameters m, n, d, m0 , m1 , n0 , n1 , d0 , and d1 . There will be at most mn vertices, and the graph will
be simply an m× n grid unless d is small enough to permit adjacent pixels to have equal values. The graph
will also become rather trivial if d is too small.
Utility fields first pixel and last pixel give, for each vertex, numbers of the form k ∗ n + l, identifying

the topmost/leftmost and bottommost/rightmost positions [k, l] in the region corresponding to that vertex.
Utility fields matrix rows and matrix cols in the Graph record contain the values of m and n; thus, in
particular, the value of n needed to decompose first pixel and last pixel into individual coordinates can be
found in g⃗ matrix cols .
The original pixel value of a vertex is placed into its pixel value utility field.

#define pixel value x.I
#define first pixel y.I
#define last pixel z.I
#define matrix rows uu .I
#define matrix cols vv .I

Graph ∗plane lisa (m,n, d,m0 ,m1 ,n0 ,n1 , d0 , d1)
unsigned long m, n; /∗ number of rows and columns desired ∗/
unsigned long d; /∗ maximum value desired ∗/
unsigned long m0 , m1 ; /∗ input will be from rows [m0 . .m1) ∗/
unsigned long n0 , n1 ; /∗ and from columns [n0 . .n1) ∗/
unsigned long d0 , d1 ; /∗ lower and upper threshold of raw pixel scores ∗/

{ ⟨Local variables for plane lisa 24 ⟩
init area (working storage);
⟨Figure out the number of connected regions, regs 26 ⟩;
⟨Set up a graph with regs vertices 29 ⟩;
⟨Put the appropriate edges into the graph 30 ⟩;

trouble : gb free (working storage);
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

10 PLANAR GRAPHS GB LISA §24

24. ⟨Local variables for plane lisa 24 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by plane lisa ∗/
register long j, k, l; /∗ all-purpose indices ∗/
Area working storage ; /∗ tables needed while plane lisa does its thinking ∗/
long ∗a; /∗ the matrix constructed by lisa ∗/
long regs = 0; /∗ number of vertices generated so far ∗/

See also sections 27 and 31.

This code is used in section 23.

25. ⟨ gb_lisa.h 1 ⟩ +≡
#define pixel value x.I /∗ definitions for the header file ∗/
#define first pixel y.I
#define last pixel z.I
#define matrix rows uu .I
#define matrix cols vv .I

26. The following algorithm for counting the connected regions considers the array elements a[k, l] to be
linearly ordered as they appear in memory. Thus we can speak of the n elements preceding a given element
a[k, l], if k > 0; these are the elements a[k, l− 1], . . . , a[k, 0], a[k− 1, n− 1], . . . , a[k− 1, l]. These n elements
appear in n different columns.
During the algorithm, we move through the array from bottom right to top left, maintaining an auxiliary

table ⟨f [0], . . . , f [n − 1]⟩ with the following significance: Whenever two of the n elements preceding our
current position [k, l] are connected to each other by a sequence of pixels with equal value, where the
connecting links do not involve pixels more than n steps before our current position, those elements will be
linked together in the f array. More precisely, we will have f [c1] = c2, . . . , f [cj−1] = cj , and f [cj] = cj ,
when there are j equivalent elements in columns c1, . . . , cj . Here c1 will be the “last” column and cj the
“first,” in wraparound order; each element with f [c] ̸= c points to an earlier element.

The main function of the f table is to identify the topmost/leftmost pixel of a region. If we are at position
[k, l] and if we find f [l] = l while a[k − 1, l] ̸= a[k, l], there is no way to connect [k, l] to earlier positions, so
we create a new vertex for it.
We also change the amatrix, to facilitate another algorithm below. If position [k, l] is the topmost/leftmost

pixel of a region, we set a[k, l] = −1−a[k, l]; otherwise we set a[k, l] = f [l], the column of a preceding element
belonging to the same region.

⟨Figure out the number of connected regions, regs 26 ⟩ ≡
a = lisa (m,n, d,m0 ,m1 ,n0 ,n1 , d0 , d1 ,working storage);
if (a ≡ Λ) return Λ; /∗ panic code has been set by lisa ∗/
sscanf (lisa id , "lisa(%lu,%lu,",&m,&n); /∗ adjust for defaults ∗/
f = gb typed alloc(n,unsigned long,working storage);
if (f ≡ Λ) {
gb free (working storage); /∗ recycle the a matrix ∗/
panic(no room + 2); /∗ there’s no room for the f vector ∗/

}
⟨Pass over the a matrix from bottom right to top left, looking for the beginnings of connected regions 28 ⟩;

This code is used in section 23.

27. ⟨Local variables for plane lisa 24 ⟩ +≡
unsigned long ∗f ; /∗ beginning of array f ; f [j] is the column of an equivalent element ∗/
long ∗apos ; /∗ the location of a[k, l] ∗/

§28 GB LISA PLANAR GRAPHS 11

28. We maintain a pointer apos equal to &a[k, l], so that ∗(apos−1) = a[k, l−1] and ∗(apos−n) = a[k−1, l]
when l > 0 and k > 0.

The loop that replaces f [j] by j can cause this algorithm to take time mn2. We could improve the worst
case by using path compression, but the extra complication is rarely worth the trouble.

⟨Pass over the a matrix from bottom right to top left, looking for the beginnings of connected regions 28 ⟩ ≡
for (k = m, apos = a+ n ∗ (m+ 1)− 1; k ≥ 0; k−−)
for (l = n− 1; l ≥ 0; l−−, apos−−) {
if (k < m) {
if (k > 0 ∧ ∗(apos − n) ≡ ∗apos) {
for (j = l; f [j] ̸= j; j = f [j]) ; /∗ find the first element ∗/
f [j] = l; /∗ link it to the new first element ∗/
∗apos = l;

} else if (f [l] ≡ l) ∗apos = −1− ∗apos , regs++; /∗ new region found ∗/
else ∗apos = f [l];

}
if (k > 0 ∧ l < n− 1 ∧ ∗(apos − n) ≡ ∗(apos − n+ 1)) f [l + 1] = l;
f [l] = l;

}
This code is used in section 26.

29. ⟨Set up a graph with regs vertices 29 ⟩ ≡
new graph = gb new graph (regs);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "plane_%s", lisa id);
strcpy (new graph⃗util types , "ZZZIIIZZIIZZZZ");
new graph⃗matrix rows = m;
new graph⃗matrix cols = n;

This code is used in section 23.

12 PLANAR GRAPHS GB LISA §30

30. Now we make another pass over the matrix, this time from top left to bottom right. An auxiliary
vector of length n is once again sufficient to tell us when one region is adjacent to a previous one. In this case
the vector is called u, and it contains pointers to the vertices in the n positions before our current position.
We assume that a pointer to a Vertex takes the same amount of memory as an unsigned long, hence u
can share the space formerly occupied by f ; if this is not the case, a system-dependent change should be
made here.
The vertex names are simply integers, starting with 0.

⟨Put the appropriate edges into the graph 30 ⟩ ≡
regs = 0;
u = (Vertex ∗∗) f ;
for (l = 0; l < n; l++) u[l] = Λ;
for (k = 0, apos = a, aloc = 0; k < m; k++)
for (l = 0; l < n; l++, apos++, aloc++) {
w = u[l];
if (∗apos < 0) {
sprintf (str buf , "%ld", regs);
v = new graph⃗vertices + regs ;
v⃗ name = gb save string (str buf);
v⃗ pixel value = −∗apos − 1;
v⃗ first pixel = aloc ;
regs++;

} else v = u[∗apos];
u[l] = v;
v⃗ last pixel = aloc ;
if (gb trouble code) goto trouble ;
if (k > 0 ∧ v ̸= w) adjac(v, w);
if (l > 0 ∧ v ̸= u[l − 1]) adjac(v, u[l − 1]);

}
This code is used in section 23.

31. ⟨Local variables for plane lisa 24 ⟩ +≡
Vertex ∗∗u; /∗ table of vertices for previous n pixels ∗/
Vertex ∗v; /∗ vertex corresponding to position [k, l] ∗/
Vertex ∗w; /∗ vertex corresponding to position [k − 1, l] ∗/
long aloc ; /∗ k ∗ n+ l ∗/

32. The adjac routine makes two vertices adjacent, if they aren’t already. A faster way to recognize
duplicates would probably speed things up.

⟨Private subroutines 15 ⟩ +≡
static void adjac(u, v)

Vertex ∗u, ∗v;
{ Arc ∗a;
for (a = u⃗ arcs ; a; a = a⃗ next)
if (a⃗ tip ≡ v) return;

gb new edge (u, v, 1L);
}

§33 GB LISA BIPARTITE GRAPHS 13

33. Bipartite graphs. An even simpler class of Mona-Lisa-based graphs is obtained by considering the
m rows and n columns to be individual vertices, with a row adjacent to a column if the associated pixel
value is sufficiently large or sufficiently small. All edges have length 1.
The subroutine call bi lisa (m,n,m0 ,m1 ,n0 ,n1 , thresh , c) constructs the bipartite graph corresponding

to the m × n digitization produced by lisa , using parameters (m0 ,m1 ,n0 ,n1) to define a rectangular
subpicture as described earlier. The threshold parameter thresh should be between 0 and 65535. If the pixel
value in row k and column l is at least thresh/65535 of its maximum, vertices k and l will be adjacent. If
c ̸= 0, however, the convention is reversed; vertices are then adjacent when the corresponding pixel value is
smaller than thresh/65535. Thus adjacencies come from “light” areas of da Vinci’s painting when c = 0 and
from “dark” areas when c ̸= 0. There are m+ n vertices and up to m× n edges.
The actual pixel value is recorded in utility field b.I of each arc, and scaled to be in the range [0, 65535].

Graph ∗bi lisa (m,n,m0 ,m1 ,n0 ,n1 , thresh , c)
unsigned long m, n; /∗ number of rows and columns desired ∗/
unsigned long m0 , m1 ; /∗ input will be from rows [m0 . .m1) ∗/
unsigned long n0 , n1 ; /∗ and from columns [n0 . .n1) ∗/
unsigned long thresh ; /∗ threshold defining adjacency ∗/
long c; /∗ should we prefer dark pixels to light pixels? ∗/

{ ⟨Local variables for bi lisa 34 ⟩
init area (working storage);
⟨Set up a bipartite graph with m+ n vertices 35 ⟩;
⟨Put the appropriate edges into the bigraph 36 ⟩;
gb free (working storage);
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

34. ⟨Local variables for bi lisa 34 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by bi lisa ∗/
register long k, l; /∗ all-purpose indices ∗/
Area working storage ; /∗ tables needed while bi lisa does its thinking ∗/
long ∗a; /∗ the matrix constructed by lisa ∗/
long ∗apos ; /∗ the location of a[k, l] ∗/
register Vertex ∗u, ∗v; /∗ current vertices of interest ∗/

This code is used in section 33.

14 BIPARTITE GRAPHS GB LISA §35

35. ⟨Set up a bipartite graph with m+ n vertices 35 ⟩ ≡
a = lisa (m,n, 65535L,m0 ,m1 ,n0 ,n1 , 0L, 0L,working storage);
if (a ≡ Λ) return Λ; /∗ panic code has been set by lisa ∗/
sscanf (lisa id , "lisa(%lu,%lu,65535,%lu,%lu,%lu,%lu",&m,&n,&m0 ,&m1 ,&n0 ,&n1);
new graph = gb new graph (m+ n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "bi_lisa(%lu,%lu,%lu,%lu,%lu,%lu,%lu,%c)",m, n,m0 ,m1 ,n0 ,n1 , thresh ,

c ? ’1’ : ’0’);
new graph⃗util types [7] = ’I’; /∗ enable field b.I ∗/
mark bipartite (new graph ,m);
for (k = 0, v = new graph⃗vertices ; k < m; k++, v++) {
sprintf (str buf , "r%ld", k); /∗ row vertices are called "r0", "r1", etc. ∗/
v⃗ name = gb save string (str buf);

}
for (l = 0; l < n; l++, v++) {
sprintf (str buf , "c%ld", l); /∗ column vertices are called "c0", "c1", etc. ∗/
v⃗ name = gb save string (str buf);

}
This code is used in section 33.

36. Since we’ve called lisa with d = 65535, the determination of adjacency is simple.

⟨Put the appropriate edges into the bigraph 36 ⟩ ≡
for (u = new graph⃗vertices , apos = a; u < new graph⃗vertices +m; u++)
for (v = new graph⃗vertices +m; v < new graph⃗vertices +m+ n; apos++, v++) {

if (c ? ∗apos < thresh : ∗apos ≥ thresh) {
gb new edge (u, v, 1L);
u⃗ arcs⃗ b.I = v⃗ arcs⃗ b.I = ∗apos ;

}
}

This code is used in section 33.

§37 GB LISA INDEX 15

37. Index. As usual, we close with an index that shows where the identifiers of gb lisa are defined and
used.

a: 15, 24, 32, 34.
a thresh : 15, 17.
adjac : 30, 32.
alloc fault : 23, 33.
aloc : 30, 31.
apos : 27, 28, 30, 34, 36.
Arc: 32.
arcs : 32, 36.
area : 2, 3, 6, 9.
Area: 6, 24, 34.
b: 15.
b thresh : 15, 17.
bad specs : 8.
bi lisa : 1, 33, 34.
bit : 15, 16, 17.
br : 15, 17.
c: 33.
cap D : 7, 8, 18.
cap M : 7, 8, 13.
cap N : 7, 8, 12.
cur pix : 11, 12, 21.
d: 6, 23.
dd : 21.
d0 : 2, 3, 6, 7, 8, 18, 23, 26.
d1 : 2, 3, 6, 7, 8, 18, 23, 26.
early data fault : 19.
el gordo : 15.
eyes : 3.
f : 14, 27.
first pixel : 23, 25, 30.
gb close : 20.
gb digit : 21.
gb free : 23, 26, 33.
gb new edge : 32, 36.
gb new graph : 29, 35.
gb newline : 19, 20, 21.
gb open : 19.
gb recycle : 23, 33.
gb save string : 30, 35.
gb trouble code : 5, 9, 23, 30, 33.
gb typed alloc : 9, 26.
Graph: 1, 23, 24, 33, 34.
i: 7.
icode : 19.
id : 29, 35.
in row : 11, 12, 14, 21, 22.
init area : 23, 33.
io errors : 19, 20.
j: 7, 24.
k: 7, 15, 24, 34.

kap : 13, 14.
kappa : 13, 14.
l: 7, 24, 34.
lam : 11, 12.
lambda : 11, 12.
last pixel : 23, 25, 30.
late data fault : 20.
lisa : 1, 2, 3, 5, 6, 7, 23, 24, 26, 33, 34, 35, 36.
lisa id : 3, 4, 8, 26, 29, 35.
m: 6, 23, 33.
mark bipartite : 35.
matrix cols : 23, 25, 29.
matrix rows : 23, 25, 29.
matx : 6, 7, 9, 13, 14.
MAX_D: 2, 8.
MAX_M: 2, 8, 20.
MAX_N: 2, 8, 21, 22.
m0 : 2, 3, 6, 7, 8, 11, 19, 23, 26, 33, 35.
m1 : 2, 3, 6, 7, 8, 11, 20, 23, 26, 33, 35.
n: 6, 15, 23, 33.
na over b : 15, 18.
name : 30, 35.
new graph : 23, 24, 29, 30, 33, 34, 35, 36.
next : 32.
next kap : 13, 14.
next lam : 11, 12.
nk : 13.
nl : 12.
nmax : 15.
no room : 9, 26, 29, 35.
n0 : 2, 3, 6, 7, 8, 11, 12, 23, 26, 33, 35.
n1 : 2, 3, 6, 7, 8, 11, 23, 26, 33, 35.
out row : 12, 13, 14, 18.
p lisa : 1.
panic : 5, 8, 9, 19, 20, 23, 26, 29, 33, 35.
panic code : 5, 26, 35.
pixel value : 23, 25, 30.
plane lisa : 1, 23, 24.
q: 15.
r: 15.
regs : 24, 28, 29, 30.
smile : 3.
sprintf : 8, 29, 30, 35.
sscanf : 26, 35.
str buf : 30, 35.
strcpy : 29.
sum : 12.
system dependencies: 30.
thresh : 33, 35, 36.
tip : 32.

16 INDEX GB LISA §37

trouble : 23, 30.
u: 31, 32, 34.
util types : 29, 35.
uu : 23, 25.
v: 31, 32, 34.
Vertex: 30, 31, 32, 34.
vertices : 30, 35, 36.
Vinci, Leonardo da: 1.
vv : 23, 25.
w: 31.
working storage : 23, 24, 26, 33, 34, 35.

GB LISA NAMES OF THE SECTIONS 17

⟨Allocate the matrix 9 ⟩ Used in section 6.

⟨Check the parameters and adjust them for defaults 8 ⟩ Used in section 6.

⟨Close the data file, skipping unwanted rows at the end 20 ⟩ Used in section 10.

⟨Figure out the number of connected regions, regs 26 ⟩ Used in section 23.

⟨Generate the m rows of output 13 ⟩ Used in section 10.

⟨Global variables 4 ⟩ Used in section 6.

⟨Local variables for bi lisa 34 ⟩ Used in section 33.

⟨Local variables for lisa 7, 11, 14 ⟩ Used in section 6.

⟨Local variables for plane lisa 24, 27, 31 ⟩ Used in section 23.

⟨Maintain quotient q and remainder r while increasing n back to its original value 2kn + (bit [k −
1] . . . bit [0])2 17 ⟩ Used in section 15.

⟨Open the data file, skipping unwanted rows at the beginning 19 ⟩ Used in section 10.

⟨Pass over the a matrix from bottom right to top left, looking for the beginnings of connected regions 28 ⟩
Used in section 26.

⟨Private subroutines 15, 32 ⟩ Used in section 6.

⟨Private variables 16, 22 ⟩ Used in section 6.

⟨Process one row of pixel sums, multiplying them by f 12 ⟩ Used in section 13.

⟨Put the appropriate edges into the bigraph 36 ⟩ Used in section 33.

⟨Put the appropriate edges into the graph 30 ⟩ Used in section 23.

⟨Read lisa.dat and map it to the desired output form 10 ⟩ Used in section 6.

⟨Read a row of input into in row 21 ⟩ Used in section 13.

⟨Scale the sum found in ∗out row 18 ⟩ Used in section 13.

⟨Set up a bipartite graph with m+ n vertices 35 ⟩ Used in section 33.

⟨Set up a graph with regs vertices 29 ⟩ Used in section 23.

⟨ gb_lisa.h 1, 3, 25 ⟩

May 19, 2018 at 02:29

GB LISA
Section Page

Introduction . 1 1
Elementary image processing . 11 5
Integer scaling . 15 7
Input data format . 19 8
Planar graphs . 23 9
Bipartite graphs . 33 13
Index . 37 15

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

