
§1 GB GRAPH INTRODUCTION 1

1. Introduction. This is GB GRAPH, the data-structure module used by all GraphBase routines to
allocate memory. The basic data types for graph representation are also defined here.
Many examples of how to use these conventions appear in other GraphBase modules. The best introduction

to such examples can probably be found in GB BASIC, which contains subroutines for generating and
transforming various classical graphs.

2. The code below is believed to be system-independent; it should produce equivalent results on all systems,
assuming that the standard calloc and free functions of C are available.
However, a test program helps build confidence that everything does in fact work as it should. To make

such a test, simply compile and run test_graph. This particular test is fairly rudimentary, but it should be
passed before more elaborate routines are tested.

⟨ test_graph.c 2 ⟩ ≡
#include "gb_graph.h" /∗ all users of GB GRAPH should do this ∗/

⟨Declarations of test variables 19 ⟩
int main ()
{
⟨Create a small graph 36 ⟩;
⟨Test some intentional errors 18 ⟩;
⟨Check that the small graph is still there 38 ⟩;
printf ("OK,␣the␣gb_graph␣routines␣seem␣to␣work!\n");
return 0;

}

3. The C code for GB GRAPH doesn’t have a main routine; it’s just a bunch of subroutines waiting to be
incorporated into programs at a higher level via the system loading routine. Here is the general outline of
gb_graph.c:

#ifdef SYSV

#include <string.h>

#else
#include <strings.h>

#endif
#include <stdio.h>

#include <stdlib.h>

⟨Preprocessor definitions ⟩
⟨Type declarations 8 ⟩
⟨Private declarations 28 ⟩
⟨External declarations 5 ⟩
⟨External functions 13 ⟩

2 INTRODUCTION GB GRAPH §4

4. The type declarations of GB GRAPH appear also in the header file gb_graph.h. For convenience, that
header file also incorporates the standard system headers for input/output and string manipulation.
Some system header files define an unsafe macro called min , which will interfere with GraphBase use of

a useful identifier. We scotch that.

⟨ gb_graph.h 4 ⟩ ≡
#include <stdio.h>

#include <stdlib.h>

#ifdef SYSV

#include <string.h>

#else
#include <strings.h>

#endif
#undef min
⟨Type declarations 8 ⟩

See also sections 6, 7, 15, 17, 22, 25, 33, 41, and 42.

5. GraphBase programs often have a “verbose” option, which needs to be enabled by the setting of an
external variable. They also tend to have a variable called panic code , which helps identify unusual errors.
We might as well declare those variables here.

⟨External declarations 5 ⟩ ≡
long verbose = 0; /∗ nonzero if “verbose” output is desired ∗/
long panic code = 0; /∗ set nonzero if graph generator returns null pointer ∗/

See also sections 14, 24, and 32.

This code is used in section 3.

6. Every external variable should be declared twice in this CWEB file: once for GB GRAPH itself (the “real”
declaration for storage allocation purposes) and once in gb_graph.h (for cross-references by GB GRAPH

users).

⟨ gb_graph.h 4 ⟩ +≡
extern long verbose ; /∗ nonzero if “verbose” output is desired ∗/
extern long panic code ; /∗ set nonzero if graph generator panics ∗/

7. When panic code is assigned a nonzero value, one of the symbolic names defined here is used to
help pinpoint the problem. Small values indicate memory limitations; values in the 10s and 20s indicate
input/output anomalies; values in the 30s and 40s indicate errors in the parameters to a subroutine. Some
panic codes stand for cases the author doesn’t think will ever arise, although the program checks for them
just to be extra safe. Multiple instances of the same type of error within a single subroutine are distinguished
by adding an integer; for example, ‘syntax error + 1’ and ‘syntax error + 2’ identify two different kinds of
syntax error, as an aid in trouble-shooting. The early data fault and late data fault codes are explained
further by the value of io errors .

⟨ gb_graph.h 4 ⟩ +≡
#define alloc fault (−1) /∗ a previous memory request failed ∗/
#define no room 1 /∗ the current memory request failed ∗/
#define early data fault 10 /∗ error detected at beginning of .dat file ∗/
#define late data fault 11 /∗ error detected at end of .dat file ∗/
#define syntax error 20 /∗ error detected while reading .dat file ∗/
#define bad specs 30 /∗ parameter out of range or otherwise disallowed ∗/
#define very bad specs 40 /∗ parameter far out of range or otherwise stupid ∗/
#define missing operand 50 /∗ graph parameter is Λ ∗/
#define invalid operand 60 /∗ graph parameter doesn’t obey assumptions ∗/
#define impossible 90 /∗ “this can’t happen” ∗/

§8 GB GRAPH REPRESENTATION OF GRAPHS 3

8. Representation of graphs. The GraphBase programs employ a simple and flexible set of data
structures to represent and manipulate graphs in computer memory. Vertices appear in a sequential array
of Vertex records, and the arcs emanating from each vertex appear in a linked list of Arc records. There
is also a Graph record, to provide information about the graph as a whole.
The structure layouts for Vertex, Arc, and Graph records include a number of utility fields that can be

used for any purpose by algorithms that manipulate the graphs. Each utility field is a union type that can
be either a pointer of various kinds or a (long) integer.
Let’s begin the formal definition of these data structures by declaring the union type util. The suffixes .V ,

.A, .G, and .S on the name of a utility variable mean that the variable is a pointer to a vertex, arc, graph, or
string, respectively; the suffix .I means that the variable is an integer. (We use one-character names because
such names are easy to type when debugging.)

⟨Type declarations 8 ⟩ ≡
typedef union {
struct vertex struct ∗V ; /∗ pointer to Vertex ∗/
struct arc struct ∗A; /∗ pointer to Arc ∗/
struct graph struct ∗G; /∗ pointer to Graph ∗/
char ∗S; /∗ pointer to string ∗/
long I; /∗ integer ∗/

} util;

See also sections 9, 10, 12, 20, and 34.

This code is used in sections 3 and 4.

9. Each Vertex has two standard fields and six utility fields; hence it occupies 32 bytes on most systems,
not counting the memory needed for supplementary string data. The standard fields are

arcs , a pointer to an Arc;
name , a pointer to a string of characters.

If v points to a Vertex and v⃗ arcs is Λ, there are no arcs emanating from v. But if v⃗ arcs is non-Λ, it
points to an Arc record representing an arc from v, and that record has a next field that points in the same
way to the representations of all other arcs from v.
The utility fields are called u, v, w, x, y, z. Macros can be used to give them syntactic sugar in particular

applications. They are typically used to record such things as the in-degree or out-degree, or whether a
vertex is ‘marked’. Utility fields might also link the vertex to other vertices or arcs in one or more lists.

⟨Type declarations 8 ⟩ +≡
typedef struct vertex struct {
struct arc struct ∗arcs ; /∗ linked list of arcs coming out of this vertex ∗/
char ∗name ; /∗ string identifying this vertex symbolically ∗/
util u, v, w, x, y, z; /∗ multipurpose fields ∗/

} Vertex;

4 REPRESENTATION OF GRAPHS GB GRAPH §10

10. Each Arc has three standard fields and two utility fields. Thus it occupies 20 bytes on most computer
systems. The standard fields are

tip , a pointer to a Vertex;
next , a pointer to an Arc;
len , a (long) integer.

If a points to an Arc in the list of arcs from vertex v, it represents an arc of length a⃗ len from v to a⃗ tip ,
and the next arc from v in the list is represented by a⃗ next .

The utility fields are called a and b.

⟨Type declarations 8 ⟩ +≡
typedef struct arc struct {
struct vertex struct ∗tip ; /∗ the arc points to this vertex ∗/
struct arc struct ∗next ; /∗ another arc pointing from the same vertex ∗/
long len ; /∗ length of this arc ∗/
util a, b; /∗ multipurpose fields ∗/

} Arc;

§11 GB GRAPH STORAGE ALLOCATION 5

11. Storage allocation. Memory space must be set aside dynamically for vertices, arcs, and their
attributes. The GraphBase routines provided by GB GRAPH accomplish this task with reasonable ease and
efficiency by using the concept of memory “areas.” The user should first declare an Area variable by saying,
for example,

Area s;

and if this variable isn’t static or otherwise known to be zero, it must be cleared initially by saying
‘init area (s)’. Then any number of subroutine calls of the form ‘gb alloc(n, s)’ can be given; gb alloc will
return a pointer to a block of n consecutive bytes, all cleared to zero. Finally, the user can issue the command

gb free (s);

this statement will return all memory blocks currently allocated to area s, making them available for future
allocation.
The number of bytes n specified to gb alloc must be positive, and it should usually be 1000 or more, since

this will reduce the number of system calls. Other routines are provided below to allocate smaller amounts
of memory, such as the space needed for a single new Arc.
If no memory of the requested size is presently available, gb alloc returns the null pointer Λ. In such

cases gb alloc also sets the external variable gb trouble code to a nonzero value. The user can therefore
discover whether any one of an arbitrarily long series of allocation requests has failed by making a single
test, ‘if (gb trouble code)’. The value of gb trouble code should be cleared to zero by every graph generation
subroutine; therefore it need not be initialized to zero.
A special macro gb typed alloc(n, t, s) makes it convenient to allocate the space for n items of type t in

area s.

#define gb typed alloc(n, t, s) (t∗)gb alloc((long)((n) ∗ sizeof (t)), s)

12. The implementation of this scheme is almost ridiculously easy. The value of n is increased by twice
the number of bytes in a pointer, and the resulting number is rounded upwards if necessary so that it’s a
multiple of 256. Then memory is allocated using calloc . The extra bytes will contain two pointers, one to
the beginning of the block and one to the next block associated with the same area variable.
The Area type is defined to be an array of length 1. This makes it possible for users to say just ‘s’ instead

of ‘&s’ when using an area variable as a parameter.

⟨Type declarations 8 ⟩ +≡
#define init area (s) ∗s = Λ
struct area pointers {
char ∗first ; /∗ address of the beginning of this block ∗/
struct area pointers ∗next ; /∗ address of area pointers in the previously allocated block ∗/

};
typedef struct area pointers ∗Area[1];

6 STORAGE ALLOCATION GB GRAPH §13

13. First we round n up, if necessary, so that it’s a multiple of the size of a pointer variable. Then we
know we can put area pointers into memory at a position n after any address returned by calloc . (This
logic should work whenever the number of bytes in a pointer variable is a divisor of 256.)
The upper limit on n here is governed by old C conventions in which the first parameter to calloc must be

less than 216. Users who need graphs with more than half a million vertices might want to raise this limit
on their systems, but they would probably be better off representing large graphs in a more compact way.
Important Note: Programs of the Stanford GraphBase implicitly assume that all memory allocated by

calloc comes from a single underlying memory array. Pointer values are compared to each other in many
places, even when the objects pointed to have been allocated at different times. Strictly speaking, this liberal
use of pointer comparisons fails to conform to the restrictions of ANSI Standard C, if the comparison involves
a less-than or greater-than relation. Users whose system supports only the strict standard will need to make
several dozen changes.

⟨External functions 13 ⟩ ≡
char ∗gb alloc(n, s)

long n; /∗ number of consecutive bytes desired ∗/
Area s; /∗ storage area that will contain the new block ∗/

{ long m = sizeof (char ∗); /∗ m is the size of a pointer variable ∗/
Area t; /∗ a temporary pointer ∗/
char ∗loc ; /∗ the block address ∗/
if (n ≤ 0 ∨ n > #ffff00− 2 ∗m) {

gb trouble code |= 2; /∗ illegal request ∗/
return Λ;

}
n = ((n+m− 1)/m) ∗m; /∗ round up to multiple of m ∗/
loc = (char ∗) calloc((unsigned)((n+ 2 ∗m+ 255)/256), 256);
if (loc) {
∗t = (struct area pointers ∗)(loc + n);
(∗t)⃗ first = loc ;
(∗t)⃗ next = ∗s;
∗s = ∗t;

} else gb trouble code |= 1;
return loc ;

}
See also sections 16, 23, 26, 27, 29, 30, 31, 35, 39, 40, 44, 46, 47, and 48.

This code is used in section 3.

14. ⟨External declarations 5 ⟩ +≡
long gb trouble code = 0; /∗ did gb alloc return Λ? ∗/

15. ⟨ gb_graph.h 4 ⟩ +≡
extern long gb trouble code ; /∗ anomalies noted by gb alloc ∗/

§16 GB GRAPH STORAGE ALLOCATION 7

16. Notice that gb free (s) can be called twice in a row, because the list of blocks is cleared out of the area
variable s.

⟨External functions 13 ⟩ +≡
void gb free (s)

Area s;
{ Area t;

while (∗s) {
∗t = (∗s)⃗ next ;
free ((∗s)⃗ first);
∗s = ∗t;

}
}

17. The two external procedures we’ve defined above should be mentioned in the header file, so let’s do
that before we forget.

⟨ gb_graph.h 4 ⟩ +≡
extern char ∗gb alloc(); /∗ allocate another block for an area ∗/

#define gb typed alloc(n, t, s) (t∗)gb alloc((long)((n) ∗ sizeof (t)), s)
extern void gb free (); /∗ deallocate all blocks for an area ∗/

18. Here we try to allocate 10 million bytes of memory. If we succeed, fine; if not, we verify that the error
was properly reported.
(An early draft of this program attempted to allocate memory until all space was exhausted. That tactic

provided a more thorough test, but it was a bad idea because it brought certain large systems to their
knees; it was terribly unfriendly to other users who were innocently trying to do their own work on the same
machine.)

⟨Test some intentional errors 18 ⟩ ≡
if (gb alloc(0L, s) ̸= Λ ∨ gb trouble code ̸= 2) {
fprintf (stderr , "Allocation␣error␣2␣wasn’t␣reported␣properly!\n"); return −2;

}
for (; g⃗ vv .I < 100; g⃗ vv .I++) if (gb alloc(100000L, s)) {

g⃗ uu .I++;
printf (".");
fflush (stdout);

}
if (g⃗ uu .I < 100 ∧ gb trouble code ̸= 3) {
fprintf (stderr , "Allocation␣error␣1␣wasn’t␣reported␣properly!\n"); return −1;

}
if (g⃗ uu .I ≡ 0) {
fprintf (stderr , "I␣couldn’t␣allocate␣any␣memory!\n"); return −3;

}
gb free (s); /∗ we’ve exhausted memory, let’s put some back ∗/
printf ("Hey,␣I␣allocated␣%ld00000␣bytes␣successfully.␣Terrific...\n", g⃗ uu .I);
gb trouble code = 0;

This code is used in section 2.

19. ⟨Declarations of test variables 19 ⟩ ≡
Area s; /∗ temporary allocations in the test routine ∗/

See also section 37.

This code is used in section 2.

8 GROWING A GRAPH GB GRAPH §20

20. Growing a graph. Now we’re ready to look at the Graph type. This is a data structure that can
be passed to an algorithm that operates on graphs—to find minimum spanning trees, or strong components,
or whatever.
A Graph record has seven standard fields and six utility fields. The standard fields are

vertices , a pointer to an array of Vertex records;
n, the total number of vertices;
m, the total number of arcs;
id , a symbolic identification giving parameters of the GraphBase procedure

that generated this graph;
util types , a symbolic representation of the data types in utility fields;
data , an Area used for Arc storage and string storage;
aux data , an Area used for auxiliary information that some users might

want to discard.

The utility fields are called uu , vv , ww , xx , yy , and zz .
As a consequence of these conventions, we can visit all arcs of a graph g by using the following program:

Vertex ∗v;
Arc ∗a;
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++)
for (a = v⃗ arcs ; a; a = a⃗ next)
visit (v, a);

⟨Type declarations 8 ⟩ +≡
#define ID_FIELD_SIZE 161
typedef struct graph struct {
Vertex ∗vertices ; /∗ beginning of the vertex array ∗/
long n; /∗ total number of vertices ∗/
long m; /∗ total number of arcs ∗/
char id [ID_FIELD_SIZE]; /∗ GraphBase identification ∗/
char util types [15]; /∗ usage of utility fields ∗/
Area data ; /∗ the main data blocks ∗/
Area aux data ; /∗ subsidiary data blocks ∗/
util uu , vv , ww , xx , yy , zz ; /∗ multipurpose fields ∗/

} Graph;

21. The util types field should always hold a string of length 14, followed as usual by a null character to
terminate that string. The first six characters of util types specify the usage of utility fields u, v, w, x, y,
and z in Vertex records; the next two characters give the format of the utility fields in Arc records; the
last six give the format of the utility fields in Graph records. Each character should be either I (denoting a
long integer), S (denoting a pointer to a string), V (denoting a pointer to a Vertex), A (denoting a pointer
to an Arc), G (denoting a pointer to a Graph), or Z (denoting an unused field that remains zero). The
default for util types is "ZZZZZZZZZZZZZZ", when none of the utility fields is being used.

For example, suppose that a bipartite graph g is using field g⃗ uu .I to specify the size of its first part.
Suppose further that g has a string in utility field a of each Arc and uses utility field w of Vertex records
to point to an Arc. If g leaves all other utility fields untouched, its util types should be "ZZAZZZSZIZZZZZ".

The util types string is presently examined only by the save graph and restore graph routines, which
convert GraphBase graphs from internal data structures to symbolic external files and vice versa. Therefore
users need not update the util types when they write algorithms to manipulate graphs, unless they are going
to use save graph to output a graph in symbolic form, or unless they are using some other GraphBase-related
software that might rely on the conventions of util types . (Such software is not part of the “official” Stanford
GraphBase, but it might conceivably exist some day.)

§22 GB GRAPH GROWING A GRAPH 9

22. Some applications of bipartite graphs require all vertices of the first part to appear at the beginning
of the vertices array. In such cases, utility field uu .I is traditionally given the symbolic name n 1 , and it is
set equal to the size of that first part. The size of the other part is then g⃗ n− g⃗ n 1 .

#define n 1 uu .I /∗ utility field uu may denote size of bipartite first part ∗/
⟨ gb_graph.h 4 ⟩ +≡
#define n 1 uu .I
#define mark bipartite (g,n1) g⃗ n 1 = n1 , g⃗ util types [8] = ’I’

23. A new graph is created by calling gb new graph (n), which returns a pointer to a Graph record for a
graph with n vertices and no arcs. This function also initializes several private variables that are used by
the gb new arc , gb new edge , gb virgin arc , and gb save string procedures below.

We actually reserve space for n + extra n vertices, although claiming only n, because several graph
manipulation algorithms like to add a special vertex or two to the graphs they deal with.

⟨External functions 13 ⟩ +≡
Graph ∗gb new graph (n)

long n; /∗ desired number of vertices ∗/
{
cur graph = (Graph ∗) calloc(1, sizeof (Graph));
if (cur graph) {

cur graph⃗vertices = gb typed alloc(n+ extra n ,Vertex, cur graph⃗data);
if (cur graph⃗vertices) {

Vertex ∗p;
cur graph⃗n = n;
for (p = cur graph⃗vertices + n+ extra n − 1; p ≥ cur graph⃗vertices ; p−−)
p⃗ name = null string ;

sprintf (cur graph⃗ id , "gb_new_graph(%ld)", n);
strcpy (cur graph⃗util types , "ZZZZZZZZZZZZZZ");

} else {
free ((char ∗) cur graph);
cur graph = Λ;

}
}
next arc = bad arc = Λ;
next string = bad string = Λ;
gb trouble code = 0;
return cur graph ;

}

24. The value of extra n is ordinarily 4, and it should probably always be at least 4.

⟨External declarations 5 ⟩ +≡
long extra n = 4; /∗ the number of shadow vertices allocated by gb new graph ∗/
char null string [1]; /∗ a null string constant ∗/

25. ⟨ gb_graph.h 4 ⟩ +≡
extern long extra n ; /∗ the number of shadow vertices allocated by gb new graph ∗/
extern char null string []; /∗ a null string constant ∗/
extern void make compound id (); /∗ routine to set one id field from another ∗/
extern void make double compound id (); /∗ ditto, but from two others ∗/

10 GROWING A GRAPH GB GRAPH §26

26. The id field of a graph is sometimes manufactured from the id field of another graph. The following
routines do this without allowing the string to get too long after repeated copying.

⟨External functions 13 ⟩ +≡
void make compound id (g, s1 , gg , s2) /∗ sprintf (g⃗ id , "%s%s%s", s1 , gg⃗ id , s2) ∗/

Graph ∗g; /∗ graph whose id is to be set ∗/
char ∗s1 ; /∗ string for the beginning of the new id ∗/
Graph ∗gg ; /∗ graph whose id is to be copied ∗/
char ∗s2 ; /∗ string for the end of the new id ∗/

{ int avail = ID_FIELD_SIZE − strlen (s1)− strlen (s2);
char tmp [ID_FIELD_SIZE];

strcpy (tmp , gg⃗ id);
if (strlen (tmp) < avail) sprintf (g⃗ id , "%s%s%s", s1 , tmp , s2);
else sprintf (g⃗ id , "%s%.*s...)%s", s1 , avail − 5, tmp , s2);

}

27. ⟨External functions 13 ⟩ +≡
void make double compound id (g, s1 , gg , s2 , ggg , s3)

/∗ sprintf (g⃗ id , "%s%s%s%s%s", s1 , gg⃗ id , s2 , ggg⃗ id , s3) ∗/
Graph ∗g; /∗ graph whose id is to be set ∗/
char ∗s1 ; /∗ string for the beginning of the new id ∗/
Graph ∗gg ; /∗ first graph whose id is to be copied ∗/
char ∗s2 ; /∗ string for the middle of the new id ∗/
Graph ∗ggg ; /∗ second graph whose id is to be copied ∗/
char ∗s3 ; /∗ string for the end of the new id ∗/

{ int avail = ID_FIELD_SIZE − strlen (s1)− strlen (s2)− strlen (s3);

if (strlen (gg⃗ id) + strlen (ggg⃗ id) < avail) sprintf (g⃗ id , "%s%s%s%s%s", s1 , gg⃗ id , s2 , ggg⃗ id , s3);
else sprintf (g⃗ id , "%s%.*s...)%s%.*s...)%s", s1 , avail /2− 5, gg⃗ id , s2 , (avail − 9)/2, ggg⃗ id , s3);

}

28. But how do the arcs get there? That’s where the private variables in gb new graph come in. If next arc
is unequal to bad arc , it points to an unused Arc record in a previously allocated block of Arc records.
Similarly, next string and bad string are addresses used to place strings into a block of memory allocated
for that purpose.

⟨Private declarations 28 ⟩ ≡
static Arc ∗next arc ; /∗ the next Arc available for allocation ∗/
static Arc ∗bad arc ; /∗ but if next arc = bad arc , that Arc isn’t there ∗/
static char ∗next string ; /∗ the next byte available for storing a string ∗/
static char ∗bad string ; /∗ but if next string = bad string , don’t byte ∗/
static Arc dummy arc [2]; /∗ an Arc record to point to in an emergency ∗/
static Graph dummy graph ; /∗ a Graph record that’s normally unused ∗/
static Graph ∗cur graph = &dummy graph ; /∗ the Graph most recently created ∗/

This code is used in section 3.

§29 GB GRAPH GROWING A GRAPH 11

29. All new Arc records that are created by the automatic next arc/bad arc scheme originate in a
procedure called gb virgin arc , which returns the address of a new record having type Arc.

When a new block of Arc records is needed, we create 102 of them at once. This strategy causes exactly
2048 bytes to be allocated on most computer systems—a nice round number. The routine will still work,
however, if 102 is replaced by any positive even number. The new block goes into the data area of cur graph .
Graph-building programs do not usually call gb virgin arc directly; they generally invoke one of the higher-

level routines gb new arc or gb new edge described below.
If memory space has been exhausted, gb virgin arc will return a pointer to dummy arc , so that the calling

procedure can safely refer to fields of the result even though gb trouble code is nonzero.

#define arcs per block 102

⟨External functions 13 ⟩ +≡
Arc ∗gb virgin arc()
{ register Arc ∗cur arc = next arc ;

if (cur arc ≡ bad arc) {
cur arc = gb typed alloc(arcs per block ,Arc, cur graph⃗data);
if (cur arc ≡ Λ) cur arc = dummy arc ;
else {
next arc = cur arc + 1;
bad arc = cur arc + arcs per block ;

}
}
else next arc++;
return cur arc ;

}

30. The routine gb new arc(u, v, len) creates a new arc of length len from vertex u to vertex v. The arc
becomes part of the graph that was most recently created by gb new graph—the graph pointed to by the
private variable cur graph . This routine assumes that u and v are both vertices in cur graph .

The new arc will be pointed to by u⃗ arcs , immediately after gb new arc(u, v, len) has acted. If there is no
room for the new arc, gb trouble code is set nonzero, but u⃗ arcs will point to the non-Λ record dummy arc
so that additional information can safely be stored in its utility fields without risking system crashes before
gb trouble code is tested. However, the linking structure of arcs is apt to be fouled up in such cases; programs
should make sure that gb trouble code ≡ 0 before doing any extensive computation on a graph.

⟨External functions 13 ⟩ +≡
void gb new arc(u, v, len)

Vertex ∗u, ∗v; /∗ a newly created arc will go from u to v ∗/
long len ; /∗ its length ∗/

{ register Arc ∗cur arc = gb virgin arc();

cur arc⃗ tip = v; cur arc⃗ next = u⃗ arcs ; cur arc⃗ len = len ;
u⃗ arcs = cur arc ;
cur graph⃗m++;

}

12 GROWING A GRAPH GB GRAPH §31

31. An undirected graph has “edges” instead of arcs. We represent an edge by two arcs, one going each
way.
The fact that arcs per block is even means that the gb new edge routine needs to call gb virgin arc only

once instead of twice.
Caveats: This routine, like gb new arc , should be used only after gb new graph has caused the private

variable cur graph to point to the graph containing the new edge. The routine gb new edge must not be
used together with gb new arc or gb virgin arc when building a graph, unless gb new arc and gb virgin arc
have been called an even number of times before gb new edge is invoked.

The new edge will be pointed to by u⃗ arcs and by v⃗ arcs immediately after gb new edge has created it,
assuming that u ̸= v. The two arcs appear next to each other in memory; indeed, gb new edge rigs things
so that v⃗ arcs is u⃗ arcs + 1 when u < v.
On many computers it turns out that the first Arc record of every such pair of arcs will have an address

that is a multiple of 8, and the second Arc record will have an address that is not a multiple of 8 (because
the first Arc will be 20 bytes long, and because calloc always returns a multiple of 8). However, it is not
safe to assume this when writing portable code. Algorithms for undirected graphs can still make good use
of the fact that arcs for edges are paired, without needing any mod 8 assumptions, if all edges have been
created and linked into the graph by gb new edge : The inverse of an arc a from u to v will be arc a+1 if and
only if u < v or a⃗ next = a+ 1; it will be arc a− 1 if and only if u ≥ v and a⃗ next ̸= a+ 1. The condition
a⃗ next = a+ 1 can hold only if u = v.

#define gb new graph gb nugraph /∗ abbreviations for Procrustean linkers ∗/
#define gb new arc gb nuarc
#define gb new edge gb nuedge

⟨External functions 13 ⟩ +≡
void gb new edge (u, v, len)

Vertex ∗u, ∗v; /∗ new arcs will go from u to v and from v to u ∗/
long len ; /∗ their length ∗/

{ register Arc ∗cur arc = gb virgin arc();

if (cur arc ̸= dummy arc) next arc++;
if (u < v) {
cur arc⃗ tip = v; cur arc⃗ next = u⃗ arcs ;
(cur arc + 1)⃗ tip = u; (cur arc + 1)⃗ next = v⃗ arcs ;
u⃗ arcs = cur arc ;
v⃗ arcs = cur arc + 1;

} else {
(cur arc + 1)⃗ tip = v; (cur arc + 1)⃗ next = u⃗ arcs ;
u⃗ arcs = cur arc + 1; /∗ do this now in case u ≡ v ∗/
cur arc⃗ tip = u; cur arc⃗ next = v⃗ arcs ;
v⃗ arcs = cur arc ;

}
cur arc⃗ len = (cur arc + 1)⃗ len = len ;
cur graph⃗m += 2;

}

32. Sometimes (let us hope rarely) we might need to use a dirty trick hinted at in the previous discussion.
On most computers, the mate to arc a will be a− 1 if and only if edge trick & (siz t) a is nonzero.

⟨External declarations 5 ⟩ +≡
siz t edge trick = sizeof (Arc)− (sizeof (Arc) & (sizeof (Arc)− 1));

33. ⟨ gb_graph.h 4 ⟩ +≡
extern siz t edge trick ; /∗ least significant 1 bit in sizeof (Arc) ∗/

§34 GB GRAPH GROWING A GRAPH 13

34. The type siz t just mentioned should be the type returned by C’s sizeof operation; it’s the basic
unsigned type for machine addresses in pointers. ANSI standard C calls this type size t, but we cannot
safely use size t in all the GraphBase programs because some older C systems mistakenly define size t to
be a signed type.

format siz t int

⟨Type declarations 8 ⟩ +≡
typedef unsigned long siz t; /∗ basic machine address, as signless integer ∗/

35. Vertices generally have a symbolic name, and we need a place to put such names. The gb save string
function is a convenient utility for this purpose: Given a null-terminated string of any length, gb save string
stashes it away in a safe place and returns a pointer to that place. Memory is conserved by combining strings
from the current graph into largish blocks of a convenient size.
Note that gb save string should be used only after gb new graph has provided suitable initialization,

because the private variable cur graph must point to the graph for which storage is currently being allocated,
and because the private variables next string and bad string must also have suitable values.

#define string block size 1016 /∗ 1024− 8 is usually efficient ∗/
⟨External functions 13 ⟩ +≡
char ∗gb save string (s)

register char ∗s; /∗ the string to be copied ∗/
{ register char ∗p = s;
register long len ; /∗ length of the string and the following null character ∗/
while (∗p++) ; /∗ advance to the end of the string ∗/
len = p− s;
p = next string ;
if (p+ len > bad string) { /∗ not enough room in the current block ∗/

long size = string block size ;

if (len > size) size = len ;
p = gb alloc(size , cur graph⃗data);
if (p ≡ Λ) return null string ; /∗ return a pointer to "" if memory ran out ∗/
bad string = p+ size ;

}
while (∗s) ∗p++ = ∗s++; /∗ copy the non-null bytes of the string ∗/
∗p++ = ’\0’; /∗ and append a null character ∗/
next string = p;
return p− len ;

}

36. The test routine illustrates some of these basic maneuvers.

⟨Create a small graph 36 ⟩ ≡
g = gb new graph (2L);
if (g ≡ Λ) {
fprintf (stderr , "Oops,␣I␣couldn’t␣even␣create␣a␣trivial␣graph!\n");
return −4;

}
u = g⃗ vertices ; v = u+ 1;
u⃗ name = gb save string ("vertex␣0");
v⃗ name = gb save string ("vertex␣1");

This code is used in section 2.

14 GROWING A GRAPH GB GRAPH §37

37. ⟨Declarations of test variables 19 ⟩ +≡
Graph ∗g;
Vertex ∗u, ∗v;

38. If the “edge trick” fails, the standard GraphBase routines are unaffected except for the demonstration
program MILES SPAN. (And that program uses edge trick only when printing verbose comments.)

⟨Check that the small graph is still there 38 ⟩ ≡
if (strncmp(u⃗ name , v⃗ name , 7)) {
fprintf (stderr , "Something␣is␣fouled␣up␣in␣the␣string␣storage␣machinery!\n");
return −5;

}
gb new edge (v, u,−1L);
gb new edge (u, u, 1L);
gb new arc(v, u,−1L);
if ((edge trick & (siz t)(u⃗ arcs)) ∨ (edge trick & (siz t)(u⃗ arcs⃗ next⃗ next)) ∨ ¬(edge trick &

(siz t)(v⃗ arcs⃗ next))) printf ("Warning:␣The␣\"edge␣trick\"␣failed!\n");
if (v⃗ name [7] + g⃗ n ̸= v⃗ arcs⃗ next⃗ tip⃗ name [7] + g⃗ m− 2) { /∗ ’1’ + 2 ̸= ’0’ + 5− 2 ∗/
fprintf (stderr , "Sorry,␣the␣graph␣data␣structures␣aren’t␣working␣yet.\n");
return −6;

}
This code is used in section 2.

39. Some applications might need to add arcs to several graphs at a time, violating the assumptions stated
above about cur graph and the other private variables. The switch to graph function gets around that
restriction, by using the utility slots ww , xx , yy , and zz of Graph records to save and restore the private
variables.
Just say switch to graph (g) in order to make cur graph be g and to restore the other private variables

that are needed by gb new arc , gb virgin arc , gb new edge , and gb save string . Restriction: The graph g
being switched to must have previously been switched from; that is, it must have been cur graph when
switch to graph was called previously. Otherwise its private allocation variables will not have been saved.
To meet this restriction, you should say switch to graph (Λ) just before calling gb new graph , if you intend
to switch back to the current graph later.
(The swap-in-swap-out nature of these conventions may seem inelegant, but convenience and efficiency are

more important than elegance when most applications do not need the ability to switch between graphs.)

⟨External functions 13 ⟩ +≡
void switch to graph (g)

Graph ∗g;
{
cur graph⃗ww .A = next arc ; cur graph⃗xx .A = bad arc ;
cur graph⃗yy .S = next string ; cur graph⃗zz .S = bad string ;
cur graph = (g ? g : &dummy graph);
next arc = cur graph⃗ww .A; bad arc = cur graph⃗xx .A;
next string = cur graph⃗yy .S; bad string = cur graph⃗zz .S;
cur graph⃗ww .A = Λ;
cur graph⃗xx .A = Λ;
cur graph⃗yy .S = Λ;
cur graph⃗zz .S = Λ;

}

§40 GB GRAPH GROWING A GRAPH 15

40. Finally, here’s a routine that obliterates an entire graph when it is no longer needed:

⟨External functions 13 ⟩ +≡
void gb recycle (g)

Graph ∗g;
{
if (g) {
gb free (g⃗ data);
gb free (g⃗ aux data);
free ((char ∗) g); /∗ the user must not refer to g again ∗/

}
}

41. ⟨ gb_graph.h 4 ⟩ +≡
#define gb new graph gb nugraph /∗ abbreviations for external linkage ∗/
#define gb new arc gb nuarc
#define gb new edge gb nuedge
extern Graph ∗gb new graph (); /∗ create a new graph structure ∗/
extern void gb new arc(); /∗ append an arc to the current graph ∗/
extern Arc ∗gb virgin arc(); /∗ allocate a new Arc record ∗/
extern void gb new edge (); /∗ append an edge (two arcs) to the current graph ∗/
extern char ∗gb save string (); /∗ store a string in the current graph ∗/
extern void switch to graph (); /∗ save allocation variables, swap in others ∗/
extern void gb recycle (); /∗ delete a graph structure ∗/

16 SEARCHING FOR VERTICES GB GRAPH §42

42. Searching for vertices. We sometimes want to be able to find a vertex, given its name, and it is
nice to do this in a standard way. The following simple subroutines can be used:

hash in (v) puts the name of vertex v into the hash table;

hash out (s) finds a vertex named s, if present in the hash table;

hash setup(g) prepares a hash table for all vertices of graph g;

hash lookup(s, g) looks up the name s in the hash table of g.

Routines hash in and hash out apply to the current graph being created, while hash setup and hash lookup
apply to arbitrary graphs.
Important: Utility fields u and v of each vertex are reserved for use by the search routine when hashing

is active. You can crash the system if you try to fool around with these values yourself, or if you use any
subroutines that change those fields. The first two characters in the current graph’s util types field should
be VV if the hash table information is to be saved by GB SAVE.

Warning: Users of this hash scheme must preserve the number of vertices g⃗ n in the current graph g. If
g⃗ n is changed, the hash table will be worthless, unless hash setup is used to rehash everything.

⟨ gb_graph.h 4 ⟩ +≡
extern void hash in (); /∗ input a name to the hash table of current graph ∗/
extern Vertex ∗hash out (); /∗ find a name in hash table of current graph ∗/
extern void hash setup(); /∗ create a hash table for a given graph ∗/
extern Vertex ∗hash lookup(); /∗ find a name in a given graph ∗/

43. The lookup scheme is quite simple. We compute a more-or-less random value h based on the vertex
name, where 0 ≤ h < n, assuming that the graph has n vertices. There is a list of all vertices whose
hash address is h, starting at (g⃗ vertices + h)⃗ hash head and linked together in the hash link fields, where
hash head and hash link are utility fields u.V and v.V .

#define hash link u.V
#define hash head v.V

44. ⟨External functions 13 ⟩ +≡
void hash in (v)

Vertex ∗v;
{ register char ∗t = v⃗ name ;
register Vertex ∗u;
⟨Find vertex u, whose location is the hash code for string t 45 ⟩;
v⃗ hash link = u⃗ hash head ;
u⃗ hash head = v;

}

§45 GB GRAPH SEARCHING FOR VERTICES 17

45. The hash code for a string c1c2 . . . cl of length l is a nonlinear function of the characters; this function
appears to produce reasonably random results between 0 and the number of vertices in the current graph.
Simpler approaches were noticeably poorer in the author’s tests.
Caution: This hash coding scheme is system-dependent, because it uses the system’s character codes. If

you create a graph on a machine with ASCII code and save it with GB SAVE, and if you subsequently ship
the resulting text file to some friend whose machine does not use ASCII code, your friend will have to rebuild
the hash structure with hash setup before being able to use hash lookup successfully.

#define HASH_MULT 314159 /∗ random multiplier ∗/
#define HASH_PRIME 516595003 /∗ the 27182818th prime; it’s less than 229 ∗/
⟨Find vertex u, whose location is the hash code for string t 45 ⟩ ≡

{ register long h;

for (h = 0; ∗t; t++) {
h += (h⊕ (h ≫ 1)) + HASH_MULT ∗ (unsigned char) ∗t;
while (h ≥ HASH_PRIME) h −= HASH_PRIME;

}
u = cur graph⃗vertices + (h % cur graph⃗n);

}
This code is used in sections 44 and 46.

46. If the hash function were truly random, the average number of string comparisons made would be less
than (e2 + 7)/8 ≈ 1.80 on a successful search, and less than (e2 + 1)/4 ≈ 2.10 on an unsuccessful search
[Sorting and Searching, Section 6.4, Eqs. (15) and (16)].

⟨External functions 13 ⟩ +≡
Vertex ∗hash out (s)

char ∗s;
{ register char ∗t = s;
register Vertex ∗u;
⟨Find vertex u, whose location is the hash code for string t 45 ⟩;
for (u = u⃗ hash head ; u; u = u⃗ hash link)

if (strcmp(s, u⃗ name) ≡ 0) return u;
return Λ; /∗ not found ∗/

}

47. ⟨External functions 13 ⟩ +≡
void hash setup(g)

Graph ∗g;
{ Graph ∗save cur graph ;

if (g ∧ g⃗ n > 0) { register Vertex ∗v;
save cur graph = cur graph ;
cur graph = g;
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++) v⃗ hash head = Λ;
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++) hash in (v);
g⃗ util types [0] = g⃗ util types [1] = ’V’; /∗ indicate usage of hash head and hash link ∗/
cur graph = save cur graph ;

}
}

18 SEARCHING FOR VERTICES GB GRAPH §48

48. ⟨External functions 13 ⟩ +≡
Vertex ∗hash lookup(s, g)

char ∗s;
Graph ∗g;

{ Graph ∗save cur graph ;

if (g ∧ g⃗ n > 0) { register Vertex ∗v;
save cur graph = cur graph ;
cur graph = g;
v = hash out (s);
cur graph = save cur graph ;
return v;

}
else return Λ;

}

§49 GB GRAPH INDEX 19

49. Index. Here is a list that shows where the identifiers of this program are defined and used.

A: 8.
a: 10, 20.
alloc fault : 7.
Arc: 10, 20, 21, 28, 29, 30, 31, 32, 33, 41.
arc struct: 8, 9, 10.
arcs : 9, 20, 30, 31, 38.
arcs per block : 29, 31.
Area: 12, 13, 16, 19, 20.
area pointers: 12, 13.
aux data : 20, 40.
avail : 26, 27.
b: 10.
bad arc : 23, 28, 29, 39.
bad specs : 7.
bad string : 23, 28, 35, 39.
bipartite graph: 22.
calloc : 2, 12, 13, 23, 31.
character-set dependencies: 45.
cur arc : 29, 30, 31.
cur graph : 23, 28, 29, 30, 31, 35, 39, 45, 47, 48.
data : 20, 23, 29, 35, 40.
dummy arc : 28, 29, 30, 31.
dummy graph : 28, 39.
early data fault : 7.
edge trick failure: 38.
edge trick : 32, 33, 38.
extra n : 23, 24, 25.
fflush : 18.
first : 12, 13, 16.
fprintf : 18, 36, 38.
free : 2, 16, 23, 40.
G: 8.
g: 26, 27, 37, 39, 40, 47, 48.
gb alloc : 11, 13, 14, 15, 17, 18, 35.
gb free : 11, 16, 17, 18, 40.
gb new arc : 23, 29, 30, 31, 38, 39, 41.
gb new edge : 23, 29, 31, 38, 39, 41.
gb new graph : 23, 24, 25, 28, 30, 31, 35, 36, 39, 41.
gb nuarc : 31, 41.
gb nuedge : 31, 41.
gb nugraph : 31, 41.
gb recycle : 40, 41.
gb save string : 23, 35, 36, 39, 41.
gb trouble code : 11, 13, 14, 15, 18, 23, 29, 30.
gb typed alloc : 11, 17, 23, 29.
gb virgin arc : 23, 29, 30, 31, 39, 41.
gg : 26, 27.
ggg : 27.
Graph: 20, 21, 23, 26, 27, 28, 37, 39, 40,

41, 47, 48.
graph struct: 8, 20.

h: 45.
hash head : 43, 44, 46, 47.
hash in : 42, 44, 47.
hash link : 43, 44, 46, 47.
hash lookup : 42, 45, 48.
HASH_MULT: 45.
hash out : 42, 46, 48.
HASH_PRIME: 45.
hash setup : 42, 45, 47.
I: 8.
id : 20, 23, 25, 26, 27.
ID_FIELD_SIZE: 20, 26, 27.
impossible : 7.
init area : 11, 12.
invalid operand : 7.
io errors : 7.
late data fault : 7.
len : 10, 30, 31, 35.
loc : 13.
m: 13, 20.
main : 2.
make compound id : 25, 26.
make double compound id : 25, 27.
mark bipartite : 22.
min : 4.
missing operand : 7.
n: 13, 20, 23.
n 1 : 22.
name : 9, 23, 36, 38, 44, 46.
next : 9, 10, 12, 13, 16, 20, 30, 31, 38.
next arc : 23, 28, 29, 31, 39.
next string : 23, 28, 35, 39.
no room : 7.
null string : 23, 24, 25, 35.
n1 : 22.
p: 23, 35.
panic code : 5, 6, 7.
pointer hacks: 32.
printf : 2, 18, 38.
restore graph : 21.
S: 8.
s: 13, 16, 19, 35, 46, 48.
save cur graph : 47, 48.
save graph : 21.
siz t: 32, 33, 34, 38.
size : 35.
sprintf : 23, 26, 27.
stderr : 18, 36, 38.
stdout : 18.
strcmp : 46.
strcpy : 23, 26.

20 INDEX GB GRAPH §49

string block size : 35.
strlen : 26, 27.
strncmp : 38.
switch to graph : 39, 41.
syntax error : 7.
system dependencies: 13, 32, 34.
SYSV: 3, 4.
s1 : 26, 27.
s2 : 26, 27.
s3 : 27.
t: 13, 16, 44, 46.
tip : 10, 30, 31, 38.
tmp : 26.
u: 9, 30, 31, 37, 44, 46.
undirected graph: 31.
util: 8, 9, 10, 20.
util types : 20, 21, 22, 23, 42, 47.
uu : 18, 20, 21, 22.
V : 8.
v: 9, 20, 30, 31, 37, 44, 47, 48.
verbose : 5, 6.
Vertex: 9, 10, 20, 21, 23, 30, 31, 37, 42, 44,

46, 47, 48.
vertex struct: 8, 9, 10.
vertices : 20, 22, 23, 36, 43, 45, 47.
very bad specs : 7.
vv : 18, 20.
w: 9.
ww : 20, 39.
x: 9.
xx : 20, 39.
y: 9.
yy : 20, 39.
z: 9.
zz : 20, 39.

GB GRAPH NAMES OF THE SECTIONS 21

⟨Check that the small graph is still there 38 ⟩ Used in section 2.

⟨Create a small graph 36 ⟩ Used in section 2.

⟨Declarations of test variables 19, 37 ⟩ Used in section 2.

⟨External declarations 5, 14, 24, 32 ⟩ Used in section 3.

⟨External functions 13, 16, 23, 26, 27, 29, 30, 31, 35, 39, 40, 44, 46, 47, 48 ⟩ Used in section 3.

⟨Find vertex u, whose location is the hash code for string t 45 ⟩ Used in sections 44 and 46.

⟨Private declarations 28 ⟩ Used in section 3.

⟨Test some intentional errors 18 ⟩ Used in section 2.

⟨Type declarations 8, 9, 10, 12, 20, 34 ⟩ Used in sections 3 and 4.

⟨ gb_graph.h 4, 6, 7, 15, 17, 22, 25, 33, 41, 42 ⟩
⟨ test_graph.c 2 ⟩

May 19, 2018 at 02:29

GB GRAPH
Section Page

Introduction . 1 1
Representation of graphs . 8 3
Storage allocation . 11 5
Growing a graph . 20 8
Searching for vertices . 42 16
Index . 49 19

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

