§1 SAT-RAND-REP INTRO 1

1. Intro. Given the values of k, m, n, and a random seed, this little program outputs m uniformly
random k-element clauses on n Boolean variables, in the format that my SAT solvers accept. Each clause
consists of exactly k literals involving k distinct variables.

More precisely, each of the m clauses is generated by choosing uniformly at random from among the 2% (Z)
possible clauses. It is possible to generate the same clause more than once, although repetitions are unlikely
unless 2* (Z) is fairly small or m is fairly large.

(By uniformly random, I mean to within the limits of my 31-bit random number generator.)

The programs SAT-RAND and SAT-RAND-REP-REP, which respectively restrict repetitions more severely
and less severely, can be used for comparison.

#include <stdio.h>
#include <stdlib.h>
#include "gb_flip.h"
int k&, m, n, seed; /* command-line parameters */

main (int argc, char xargu[])
{
register int i, 5, t, i, kk, nn;
(Process the command line 2);
printf ("~ sat-rand-repyhduhduhdukd\n", k, m, n, seed);
for (j =0; j <m; j++) (Generate the jth clause 3);

}

2. (Process the command line 2) =
if (arge # 5V sscanf (argv[1], "%hd", &k) # 1V sscanf (argv[2], "%d", &m) # 1V sscanf (argv[3], "%d",
&n) # 1V sscanf (argu[4], "%ha", &seed) # 1) {
forintf (stderr, "Usage: s kum n,seed\n", argv[0]);
exit(—1);
}
f(k<0){
forintf (stderr, "k must_be positive!\n");
exit (—2);

if (m<0) {
forintf (stderr, "m_must_be positive!\n");
exit(—3);
}
if (n < 0V n > 100000000) {
forintf (stderr, "n_must_ be_ between 1 ,and,;99999999, inclusive!\n");
exit (—4);
}
f(k>n){
forintf (stderr, "k _mustn’t_exceed, n!\n");
exit (—5);

gb_init_rand (seed);

This code is used in section 1.

2 INTRO

SAT-RAND-REP

§3

3. The method of exercise 3.4.2-8(c) is used to generate a random combination of k things from n. (But

I changed min to max.)
(Generate the jth clause 3) =

for (kk = k,nn =n; kk; kk—, nn =ii) {
(Set ii to the largest in a random kk out of nn 4);
printf ("uhshd", gb_next_rand () & 17 "7 o gg);
}
printf ("\n");

}

This code is used in section 1.

4. (Set i to the largest in a random kk out of nn 4) =
for (it =i=0; ¢ < kk; i++) {
t =i+ gb_unif-rand (nn — i);
if (t>1) it =t;

This code is used in section 3.

85 SAT-RAND-REP INDEX 3

5. Index.

arge: 1, 2.
argv: 1, 2.
exit: 2.
forintf: 2.
gb_init_rand: 2.
gb_next_rand: 3.
gb_unif-rand: 4.
70 1.

4 NAMES OF THE SECTIONS SAT-RAND-REP

(Generate the jth clause 3) Used in section 1.
(Process the command line 2) Used in section 1.
(Set i to the largest in a random kk out of nn 4) Used in section 3.

SAT-RAND-REP

Section Page

