
§1 GB SORT INTRODUCTION 1

1. Introduction. This short GraphBase module provides a simple utility routine called gb linksort ,
which is used in many of the other programs.

#include <stdio.h> /∗ the NULL pointer (Λ) is defined here ∗/
#include "gb_flip.h" /∗ we need to use the random number generator ∗/

⟨Preprocessor definitions ⟩
⟨Declarations 2 ⟩
⟨The gb linksort routine 5 ⟩

2. Most of the graphs obtained from GraphBase data are parameterized, so that different effects can be
obtained easily from the same underlying body of information. In many cases the desired graph is determined
by selecting the “heaviest” vertices according to some notion of “weight,” and/or by taking a random sample
of vertices. For example, the GraphBase routine words (n,wt vector ,wt threshold , seed) creates a graph based
on the n most common five-letter words of English, where common-ness is determined by a given weight
vector. When several words have equal weight, we want to choose between them at random. In particular,
this means that we can obtain a completely random choice of words if the weight vector assigns the same
weight to each word.
The gb linksort routine is a convenient tool for this purpose. It takes a given linked list of nodes and

shuffles their link fields so that the nodes can be read in decreasing order of weight, and so that equal-weight
nodes appear in random order. Note: The random number generator of GB FLIP must be initialized before
gb linksort is called.
The nodes sorted by gb linksort can be records of any structure type, provided only that the first field

is ‘long key ’ and the second field is ‘struct this struct type ∗link ’. Further fields are not examined. The
node type defined in this section is the simplest possible example of such a structure.
Sorting is done by means of the key fields, which must each contain nonnegative integers less than 231.
After sorting is complete, the data will appear in 128 linked lists: gb sorted [127], gb sorted [126], . . . ,

gb sorted [0]. To examine the nodes in decreasing order of weight, one can read through these lists with a
routine such as

{
int j;
node ∗p;
for (j = 127; j ≥ 0; j−−)
for (p = (node ∗) gb sorted [j]; p; p = p⃗ link)

look at (p);
}

All nodes whose keys are in the range j · 224 ≤ key < (j + 1) · 224 will appear in list gb sorted [j]. Therefore
the results will all be found in the single list gb sorted [0], if all the keys are strictly less than 224.

format node int

⟨Declarations 2 ⟩ ≡
typedef struct node struct {
long key ; /∗ a numeric quantity, assumed nonnegative ∗/
struct node struct ∗link ; /∗ the next node on a list ∗/

} node; /∗ applications of gb linksort may have other fields after link ∗/
See also section 4.

This code is used in section 1.

2 INTRODUCTION GB SORT §3

3. In the header file, gb sorted is declared to be an array of pointers to char, since nodes may have
different types in different applications. User programs should cast gb sorted to the appropriate type as in
the example above.

⟨ gb_sort.h 3 ⟩ ≡
extern void gb linksort (); /∗ procedure to sort a linked list ∗/
extern char ∗gb sorted []; /∗ the results of gb linksort ∗/

4. Six passes of a radix sort, using radix 256, will accomplish the desired objective rather quickly. (See,
for example, Algorithm 5.2.5R in Sorting and Searching.) The first two passes use random numbers instead
of looking at the key fields, thereby effectively extending the keys so that nodes with equal keys will appear
in reasonably random order.
We move the nodes back and forth between two arrays of lists: the external array gb sorted and a private

array called alt sorted .

⟨Declarations 2 ⟩ +≡
node ∗gb sorted [256]; /∗ external bank of lists, for even-numbered passes ∗/
static node ∗alt sorted [256]; /∗ internal bank of lists, for odd-numbered passes ∗/

5. So here we go with six passes over the data.

⟨The gb linksort routine 5 ⟩ ≡
void gb linksort (l)

node ∗l;
{ register long k; /∗ index to destination list ∗/
register node ∗∗pp ; /∗ current place in list of pointers ∗/
register node ∗p, ∗q; /∗ pointers for list manipulation ∗/
⟨Partition the given list into 256 random sublists alt sorted 6 ⟩;
⟨Partition the alt sorted lists into 256 random sublists gb sorted 7 ⟩;
⟨Partition the gb sorted lists into alt sorted by low-order byte 8 ⟩;
⟨Partition the alt sorted lists into gb sorted by second-lowest byte 9 ⟩;
⟨Partition the gb sorted lists into alt sorted by second-highest byte 10 ⟩;
⟨Partition the alt sorted lists into gb sorted by high-order byte 11 ⟩;

}
This code is used in section 1.

6. ⟨Partition the given list into 256 random sublists alt sorted 6 ⟩ ≡
for (pp = alt sorted + 255; pp ≥ alt sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (p = l; p; p = q) {
k = gb next rand () ≫ 23; /∗ extract the eight most significant bits ∗/
q = p⃗ link ;
p⃗ link = alt sorted [k];
alt sorted [k] = p;

}
This code is used in section 5.

§7 GB SORT INTRODUCTION 3

7. ⟨Partition the alt sorted lists into 256 random sublists gb sorted 7 ⟩ ≡
for (pp = gb sorted + 255; pp ≥ gb sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (pp = alt sorted + 255; pp ≥ alt sorted ; pp−−)
for (p = ∗pp ; p; p = q) {
k = gb next rand () ≫ 23; /∗ extract the eight most significant bits ∗/
q = p⃗ link ;
p⃗ link = gb sorted [k];
gb sorted [k] = p;

}
This code is used in section 5.

8. ⟨Partition the gb sorted lists into alt sorted by low-order byte 8 ⟩ ≡
for (pp = alt sorted + 255; pp ≥ alt sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (pp = gb sorted + 255; pp ≥ gb sorted ; pp−−)
for (p = ∗pp ; p; p = q) {
k = p⃗ key & #ff; /∗ extract the eight least significant bits ∗/
q = p⃗ link ;
p⃗ link = alt sorted [k];
alt sorted [k] = p;

}
This code is used in section 5.

9. Here we must read from alt sorted from 0 to 255, not from 255 to 0, to get the desired final order. (Each
pass reverses the order of the lists; it’s tricky, but it works.)

⟨Partition the alt sorted lists into gb sorted by second-lowest byte 9 ⟩ ≡
for (pp = gb sorted + 255; pp ≥ gb sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (pp = alt sorted ; pp < alt sorted + 256; pp++)
for (p = ∗pp ; p; p = q) {
k = (p⃗ key ≫ 8) & #ff; /∗ extract the next eight bits ∗/
q = p⃗ link ;
p⃗ link = gb sorted [k];
gb sorted [k] = p;

}
This code is used in section 5.

10. ⟨Partition the gb sorted lists into alt sorted by second-highest byte 10 ⟩ ≡
for (pp = alt sorted + 255; pp ≥ alt sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (pp = gb sorted + 255; pp ≥ gb sorted ; pp−−)
for (p = ∗pp ; p; p = q) {
k = (p⃗ key ≫ 16) & #ff; /∗ extract the next eight bits ∗/
q = p⃗ link ;
p⃗ link = alt sorted [k];
alt sorted [k] = p;

}
This code is used in section 5.

4 INTRODUCTION GB SORT §11

11. The most significant bits will lie between 0 and 127, because we assumed that the keys are nonnegative
and less than 231. (A similar routine would be able to sort signed integers, or unsigned long integers, but
the C code would not then be portable.)

⟨Partition the alt sorted lists into gb sorted by high-order byte 11 ⟩ ≡
for (pp = gb sorted + 255; pp ≥ gb sorted ; pp−−) ∗pp = Λ; /∗ empty all the destination lists ∗/
for (pp = alt sorted ; pp < alt sorted + 256; pp++)
for (p = ∗pp ; p; p = q) {
k = (p⃗ key ≫ 24) & #ff; /∗ extract the most significant bits ∗/
q = p⃗ link ;
p⃗ link = gb sorted [k];
gb sorted [k] = p;

}
This code is used in section 5.

§12 GB SORT INDEX 5

12. Index. Here is a list that shows where the identifiers of this program are defined and used.

alt sorted : 4, 6, 7, 8, 9, 10, 11.
gb linksort : 1, 2, 3, 5.
gb next rand : 6, 7.
gb sorted : 2, 3, 4, 7, 8, 9, 10, 11.
j: 2.
k: 5.
key : 2, 8, 9, 10, 11.
l: 5.
link : 2, 6, 7, 8, 9, 10, 11.
node: 2, 4, 5.
node struct: 2.
p: 2, 5.
pp : 5, 6, 7, 8, 9, 10, 11.
q: 5.
seed : 2.
words : 2.
wt threshold : 2.
wt vector : 2.

6 NAMES OF THE SECTIONS GB SORT

⟨Declarations 2, 4 ⟩ Used in section 1.

⟨Partition the given list into 256 random sublists alt sorted 6 ⟩ Used in section 5.

⟨Partition the alt sorted lists into 256 random sublists gb sorted 7 ⟩ Used in section 5.

⟨Partition the alt sorted lists into gb sorted by high-order byte 11 ⟩ Used in section 5.

⟨Partition the alt sorted lists into gb sorted by second-lowest byte 9 ⟩ Used in section 5.

⟨Partition the gb sorted lists into alt sorted by low-order byte 8 ⟩ Used in section 5.

⟨Partition the gb sorted lists into alt sorted by second-highest byte 10 ⟩ Used in section 5.

⟨The gb linksort routine 5 ⟩ Used in section 1.

⟨ gb_sort.h 3 ⟩

May 19, 2018 at 02:29

GB SORT
Section Page

Introduction . 1 1
Index . 12 5

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

