81 SAT-SYNTH INTRO 1

1. Intro. Given an input file that contains a partial specification of a Boolean function of N variables,
this program generates clauses that are satisfiable if and only if the function has a disjunctive normal form
with at most K terms. Parameters N and K are given on the command line.

The main variables are i+j (meaning that term ¢ contains x;) and i-j (meaning that term ¢ contains z;),
for 1 <i< K and 1< j < N. There also are subsidiary variables i.k for 1 <i¢< K and 1 < k < T, if T of
the specified function values are true.

For example, the input file
101:1

001:0

100:1

111:0

011:1
informs us that f(1,0,1) = 1, f(0,0,1) = 0, ..., f(0,1,1) = 1; here N = 3 and T = 3. If we spec-
ify K = 2, the satisfiability problem will be satisfied, for example, by 1+1, 1-2, 2-1, 2+2; that is,
f(z1,22,23) = 21T2 V T1x2 agrees with the given specifications. [This example is taken from a paper by
Kamath, Karmarker, Ramakrishnan, and Resende, Mathematical Programming 57 (1992), 215-238, where
the problem is introduced and many examples are given.]

The first line of input in the example above generates seven clauses:

1.1 2.1 (term 1 or term 2 must be true at 101)

“1.1 "1-1 (if term 1 is true at 101, it doesn’t contain Z;)
“1.1 ~“1+2 (if term 1 is true at 101, it doesn’t contain x2)
“1.1 ~“1-3 (if term 1 is true at 101, it doesn’t contain Z3)
~2.1 ~1-1 (if term 2 is true at 101, it doesn’t contain Z;)
~2.1 ~1+2 (if term 2 is true at 101, it doesn’t contain xs)
"2.1 "1-3 (if term 2 is true at 101, it doesn’t contain Z3)

And the second line generates two:

1+1 1+2 1-3 (term 1 is false at 001, so it contains x1, z2, or T3)
2+1 2+2 2-3 (term 2 is false at 001, so it contains x1, x2, or Z3)

In general, a ‘true’ line in the input generates one clause of size K and NK clauses of size 2; a ‘false’ line
generates K clauses of size N.

#define mazn 100 /+ we assume that N doesn’t exceed this */
F#define O ") /*x used for percent signs in format strings */

#include <stdio.h>
#include <stdlib.h>
char buf[mazn + 4];
int K, N; /* command-line parameters */

main (int argc, char xargu[])
{
register int i, 5, k, t;
(Process the command line 2);
printf ("~ sat-synth,%d %kd\n", N, K);
t=0; /* this many ‘true’ lines so far */
while (1) {
if (—fgets(buf, N + 4, stdin)) break;
(Generate clauses based on buf 3);
}

}

2 INTRO SAT-SYNTH

2. (Process the command line 2) =
if (arge # 3V sscanf (argv[1],""O"d",&N) # 1V sscanf (argv[2],""O"d", &K) # 1) {
forintf (stderr, "Usage:,"O"suN_K\n", argv[0]);
exit (—1);
¥
if (N > mazn) {
forintf (stderr, "That N, ("O"d) is too big for me, I ’m set up for at_most,"O"d!'\n", N,
maxn);
exit (—2);
¥

This code is used in section 1.

3. The buffer should now hold N digits, then colon, digit, >\n’, and >\0°.

(Generate clauses based on buf 3) =

if (buf[N]# 2 Vbuf[N+1] <0 Vbuf[N+1]> 1> Vbuf[N +2] # °\n’ V buf [N + 3])
forintf (stderr, "bad_ input, line ‘"O"s’ is ignored!\n", buf);

else {
for (k=0; k< N; k++)

if (buf[k] <0’ V buf[k] > >1’) break;

if (k< N) fprintf (stderr, "nonbinary data,‘"O"s’ isyignored!\n", buf);
else if (buf[N + 1] =°0’) (Generate clauses for a ‘false’ line 4)
else (Generate clauses for a ‘true’ line 5);

}

This code is used in section 1.

4. (Generate clauses for a ‘false’ line 4) =
{
for i=1; i < K; i++) {
for (j=1; j < N; j++) printf (","0"d"O"c"O"d", i, buf[j — 1] =207 7 ’+? : 7= j);
printf ("\n");
}
}

This code is used in section 3.

5. (Generate clauses for a ‘true’ line 5) =
{
t++;
for (i =1; i < K; i++) printf(","0"d."O"d" i, t);
printf ("\n");
for (i=1; i < K; i++)
for (j =1; j < N; j++)
printf ("""O"d."O"d,""O"d"O"c"O"d\n", i, t,i, buf [j — 1] =20’ 7 2+ : =2 j);

}

This code is used in section 3.

§2

86 SAT-SYNTH INDEX 3

6. Index.

arge: 1, 2.
argv: 1, 2.
buf: 1, 3, 4, 5.
exit: 2.

fgets: 1.
forintf: 2, 3.

~

S

IS

8]

3 I¥
[— =
[N}

O: 1.
printf:
sscanf
stderr:
stdin: 1.
t: 1.

o
-
ot

N
Rl

4 NAMES OF THE SECTIONS

Generate clauses based on buf 3) Used in section 1.

Generate clauses for a ‘true’ line 5) Used in section 3.
Process the command line 2) Used in section 1.

(Generate clauses for a ‘false’ line 4) Used in section 3.

SAT-SYNTH

SAT-SYNTH

Section Page

