81 SAT-TO-DIMACS INTRO 1

1. Intro. This is a filter that inputs the format used by SAT0, SAT1, etc., and outputs the well-known
DIMACS format for satisfiability problems.

DIMACS format begins with zero or more optional comment lines, indicated by their first character ‘c’.
The next line should say ‘p cnf n m’, where n is the number of variables and m is the number of clauses.
Then comes a string of m “clauses,” which are sequences of nonzero integers of absolute value < n, followed
by zero. A literal for the kth variable is represented by k; its complement is represented by —k.

SAT format is more flexible, more symbolic, and more complicated; it is explained in the programs cited
above. I hacked this program from SAT3.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

#include <time.h>
time_t myclock;
typedef unsigned int uint; /* a convenient abbreviation */
typedef unsigned long long ullng; /* ditto */

(' Type definitions 4);
(Global variables 2);

main (int argc, char xargv|])

{
register uint ¢, h, i, j, k, I, p, q, r, level, kk, pp, qq, l;
(Process the command line 3);
(Initialize everything 7);
(Input the clauses 8);
if (verbose) (Report the successful completion of the input phase 20);
myclock = time(0);
printf ("c file created by SAT-TO-DIMACS %s", ctime(&myclock));
(Output the clauses 21);

2. (Global variables 2) =

int random_seed = 0; /* seed for the random words of gb_rand */

int verbose = 1; /* level of verbosity =/

int hbits = §; /* logarithm of the number of the hash lists */

int buf size = 1024, /+ must exceed the length of the longest input line */
See also section 6.

This code is used in section 1.

[\)

INTRO SAT-TO-DIMACS

3. On the command line one can say

‘v(integer)’ to enable various levels of verbose output on stderr;

‘h(positive integer)’ to adjust the hash table size;

‘b(positive integer)’ to adjust the size of the input buffer; and/or
‘s(integer)’ to define the seed for any random numbers that are used.

~—~ ®& o o o

Process the command line 3) =

for (j = arge — 1,k =0; j; j—)
switch (argu[f][0]) {
case ’v’: k |= (sscanf (argu[j] + 1, "%d", &verbose) — 1); break;
case ’h’: k |= (sscanf (argv[j] + 1, "%d", &hbits) — 1); break;
case ’b’: k |= (sscanf (argv[j] + 1, "%d", &buf_size) — 1); break;
case ’s’: k |= (sscanf (argu[j] + 1, "%d", &random_seed) — 1); break;
default: k=1, /* unrecognized command-line option */
}

if (kV hbits < 0V hbits > 30V bufsize <0) {
forintf (stderr, "Usage: sy [v<n>] |, [h<n>]1, [b<n>] [s<n>] < foo.dat\n", argv[0]);
exit(—1);

}

This code is used in section 1.

§3

§4 SAT-TO-DIMACS THE I/O WRAPPER 3

4. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I've tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232 —1 = 4,294,967,295 occurrences
of literals in clauses, or more than 23! — 1 = 2,147,483,647 variables or clauses.

In these temporary tables, each variable is represented by four things: its unique name; its serial number;
the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define wvars_per_vchunk 341 /* preferably (2 —1)/3 for some k */

(Type definitions 4) =
typedef union {

char ch8[8];
uint u2[2];
long long Ing;
} octa;
typedef struct tmp_var_struct {
octa name; /* the name (one to eight ASCII characters) */
uint serial; /* 0 for the first variable, 1 for the second, etc. */
int stamp; /* m if positively in clause m; —m if negatively there x/
struct tmp_var_struct *xnext; /* pointer for hash list */
} tmp_var;
typedef struct vchunk_struct {
struct vchunk_struct xprev; /* previous chunk allocated (if any) */
tmp_var var[vars_per_vchunk];
} vchunk;

See also section 5.

This code is used in section 1.

5. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp_var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.
#define cells_per_chunk 511 /* preferably 2% — 1 for some k */
(Type definitions 4) +=

typedef struct chunk_struct {

struct chunk_struct *prev; /* previous chunk allocated (if any) =/

tmp_var xcell|[cells_per_chunk];
} chunk;

4 THE I/O WRAPPER SAT-TO-DIMACS

6. (Global variables 2) +=
char xbuf; /* buffer for reading the lines (clauses) of stdin */
tmp_var xxhash; /* heads of the hash lists */
uint hash_bits[93][8]; /* random bits for universal hash function */
vchunk *cur_vchunk; /* the vchunk currently being filled */
tmp_var xcur_tmp_var; /* current place to create new tmp_var entries */
tmp_var xbad_tmp_var; /* the cur_tmp_var when we need a new vchunk x/
chunk xcur_chunk; /* the chunk currently being filled */
tmp_var sxcur_cell; /* current place to create new elements of a clause x/
tmp_var xxbad_cell; /* the cur_cell when we need a new chunk x/
ullng vars; /* how many distinct variables have we seen? x/
ullng clauses; /* how many clauses have we seen? */
ullng nullclauses; /* how many of them were null? */
ullng cells; /* how many occurrences of literals in clauses? x/

7. (Initialize everything 7) =
gb_init_rand (random_seed);
buf = (char %) malloc(buf_size * sizeof (char));
if (~buf) {
forintf (stderr, "Couldn’t allocate the_ input buffer (buf_size=%d) !'\n", buf size);
exit (—2);
}
hash = (tmp_var xx) malloc(sizeof (tmp_var) < hbits);
if (—hash) {
forintf (stderr, "Couldn’t allocate %d hash list_ heads (hbits=%d) '\n", 1 < hbits, hbits);
exit (—3);
}
for (h=0; h <1< hbits; h++) hashlh] = A;
See also section 13.

This code is used in section 1.

SAT-TO-DIMACS THE I/O WRAPPER

The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits. Thus the average number of variables per hash list is n/2" when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)

All the hashing takes place at the very beginning, and the hash tables are actually recycled before any
SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

(Input the clauses 8) =

while (1) {
if (—fgets(buf, buf_size, stdin)) break;
clauses ++;

if (buf [strien(buf) — 1] # *\n’) {

forintf (stderr, "The_clause_on line %11d,,(%.20s...) is too,long for me;\n", clauses, buf);

forintf (stderr, " umy_buf _size_ isyonly %d!\n", buf_size);
fprintf (stderr, "Please use the command-line option b<newsize>.\n");
exit(—4);

(Input the clause in buf 9);

if ((vars > hbits) > 10) {

forintf (stderr, "There are,%11ld, variables but_only, %d_ hash tables;\n", vars,1 < hbits);

while ((vars > hbits) > 10) hbits++;
forintf (stderr, "_maybe you_should, use command-line option h%d?\n", hbits);

clauses —= nullclauses;

if (clauses =0) {
forintf (stderr, "No_clauses_ were_ input!\n");
exit (—=77);

}

if (vars > #80000000) {
forintf (stderr, "Whoa, the_ input had, }1lu variables!\n", vars);
exit (—664);

}

if (clauses > #80000000) {
forintf (stderr, "Whoa, the_ input had %1lu,clauses!\n", clauses);
exit (—665);

if (cells > #100000000) {
forintf (stderr, "Whoa, the, input had %1lu occurrences of literals!\n", cells);
exit (—666);

This code is used in section 1.

6 THE I/O WRAPPER SAT-TO-DIMACS

9. (Input the clause in buf 9) =
for (j=k=0;;) {

while (buf[j] = ’1’) j++; /* scan to nonblank #/

if (buf[j] =’\n’) break;

it (buf[j] < 0’ v buflj] > ") {
forintf (stderr, "Illegal, character,,(code #%x) in the clause on line %11d!\n", buf [j],

clauses);

exit (—5);

if (buf[j]=>"") i=1,j++;
else i = 0;
(Scan and record a variable; negate it if i = 1 10);

}

if (k=0) {
forintf (stderr, " (Empty,line,%11d, is being ignored)\n", clauses);
nullclauses ++; /* strictly speaking it would be unsatisfiable */

}

goto clause_done;
empty_clause: (Remove all variables of the current clause 17);
clause_done: cells +=k;

This code is used in section 8.

10. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.
#define hack_in(q,t) (tmp_var x)(¢ | (ullng) q)
{Scan and record a variable; negate it if i =1 10) =

{

register tmp._var xp;

if (cur_tmp_var = bad_tmp_var) (Install a new vchunk 11);
(Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 14);
(Find cur_tmp_var-name in the hash table at p 15);
if (p~stamp = clauses V p~stamp = —clauses) (Handle a duplicate literal 16)
else {
pstamp = (i 7 —clauses : clauses);
if (cur_cell = bad_cell) (Install a new chunk 12);
xcur_cell = p;
if (i =1) xcur_cell = hack_in(xcur_cell,1);
if (k=0) xcur_cell = hack_in(xcur_cell,2);
cur_cell ++, k++;
}
}

This code is used in section 9.

§9

§11

11.
{

}

This

12.
{

}

SAT-TO-DIMACS

(Install a new vchunk 11) =

register vchunk snew_vchunk;

new_vchunk = (vchunk x) malloc(sizeof (vchunk));

if (—new_vchunk) {
fprintf (stderr, "Can’t,allocate a_new vchunk!\n");
exit(—6);

}

new_vchunk-prev = cur_vchunk, cur_vchunk = new_vchunk;

cur_tmp_var = &new_vchunk-var|0];

bad_tmp_var = &new_vchunk-var[vars_per_vchunk];

code is used in section 10.
(Install a new chunk 12) =

register chunk xnew_chunk;

new_chunk = (chunk %) malloc(sizeof (chunk));
if (—new_chunk) {
fprintf (stderr, "Can’t allocate a_new chunk!\n");

exit (—7);

new_chunk-prev = cur_chunk, cur_chunk = new_chunk;
cur_cell = &new_chunk~cell[0];
bad_cell = &new_chunk-cell|[cells_per_chunk];

This code is used in section 10.

13.
bits.

THE I/O WRAPPER

7

The hash code is computed via “universal hashing,” using the following precomputed tables of random

(Initialize everything 7) 4+=
for (j =92; j; j—)

14.

if

for (k=0; k <8; k++) hash_bits[j]|[k] = gb_next_rand();

(Put the variable name beginning at buf [j] in cur_tmp_var-name and compute its hash code h 14) =
cur_tmp_var-name.lng = 0;
for (h=1=0; buf[j+1] >’ Abuf[j+1] <> I++) {

if (I1>7) {

fprintf (stderr, "Variable name %.9s. .. in_ the clause on, line %11d_ is_ too long!\n",

buf + j, clauses);
exit (—8);
}
h @&= hash_bits[buf [j +1] — >’][I];
cur_tmp_var-name.ch8[l] = buf [j +1J;

(1=0) goto empty_clause; /x 77 by itself is like ‘true’ */

Jj+=1
h &= (1 < hbits) — 1;

This code is used in section 10.

8 THE I/O WRAPPER SAT-TO-DIMACS §15

15. (Find cur_tmp_var-name in the hash table at p 15) =
for (p = hash[h]; p; p = p~next)
if (p~name.lng = cur_tmp_var-name.lng) break;
if (-p) { /* new variable found =/
p = cur-tmp_var ++;
p~next = hash[h], hash[h] = p;
prserial = vars ++;
p-stamp = 0;

}

This code is used in section 10.

16. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

(Handle a duplicate literal 16) =

{

if ((p~stamp > 0) = (i > 0)) goto empty_clause;

}

This code is used in section 10.

17. An input line that begins with ‘)’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

(Remove all variables of the current clause 17) =

while (k) {
(Move cur_cell backward to the previous cell 18);
k—;

}
if ((buf[0] # > 72) Vv (buf[1] # °u))

forintf (stderr, " (The clause on line %11d, is always satisfied)\n", clauses);
else if (vars =0) printf ("c %s", buf + 2); /* retain opening comments */
nullclauses ++;

This code is used in section 9.

18. (Move cur_cell backward to the previous cell 18) =
if (cur_cell > &cur_chunk-cell[0]) cur_cell —;
else {
register chunk xold_chunk = cur_chunk;
cur_chunk = old_chunk~prev; free(old_chunk);
bad_cell = & cur_chunk-cell|cells_per_chunk];
cur_cell = bad_cell — 1;

}

This code is used in sections 17 and 24.

§19 SAT-TO-DIMACS THE I/O WRAPPER 9

19. Here I must omit ‘free(old-vchunk)’ from the code that’s usually in this section, because the variable
data will be used later.

(Move cur_tmp_var backward to the previous temporary variable 19) =
if (cur_tmp_var > &cur_vchunk-var[0]) cur_tmp_var—;
else {
register vchunk xold_vchunk = cur_vchunk;
cur_vchunk = old_vchunk-prev; /* and don’t free(old_vchunk) */
bad_tmp_var = & cur_vchunk-var [vars_per_vchunk];
cur_tmp_var = bad_tmp_var — 1;

}

This code is used in section 22.

20. (Report the successful completion of the input phase 20) =
forintf (stderr, " (%11d, ,variables, %11ld, clauses, %llu literals successfully read)\n",vars,
clauses, cells);

This code is used in section 1.

10 THE OUTPUT PHASE SAT-TO-DIMACS §21

21. The output phase. I had to input everything first because DIMACS format specifies the number
of variables and clauses right at the beginning.

(Output the clauses 21) =
(Show the variable names as comments 22);
printf ("pucnf%11d,%11d\n", vars, clauses);
(Translate all the temporary cells into the simple DIMACS form 23);
(Check consistency 25);

This code is used in section 1.

22. This section is optional, but I'm including it today while I remember how to provide it.

(Show the variable names as comments 22) =
for (¢ =wars; ¢; c—) {
(Move cur_tmp_var backward to the previous temporary variable 19);
printf ("c%.8su—>u%d\n", cur_tmp_var-name.ch8, c);

This code is used in section 21.

23. (Translate all the temporary cells into the simple DIMACS form 23) =
for (c = clauses; ¢; c—) {
(Translate the cells for the literals of clause ¢ 24);
printf ("L0\n");
}

This code is used in section 21.

24. #define hackout(q) (((ullng) q) & #3)
#define hack_clean(q) ((tmp-var x)((ullng) q & —4))

(Translate the cells for the literals of clause ¢ 24) =
for (1=0; i <2; j++) {
(Move cur_cell backward to the previous cell 18);
1 = hack_out (xcur_cell);
p = hack_clean (xcur_cell)-serial;
printf ("Lhshd", i & 1?2 "= p 4 1);

This code is used in section 23.

25. (Check consistency 25) =
if (cur_cell # &cur_chunk-cell[0] V cur_chunk-prev # AV cur_tmp_var #
&cur_vchunk-var[0] V cur_vchunk-prev # A) {
forintf (stderr, "This can’t happen (consistency check failure)!\n");
exit (—14);
}

This code is used in section 21.

826 SAT-TO-DIMACS

26. Index.
arge: 1, 3.
argv: 1, 3.

bad_cell: 6, 10, 12, 18.
bad_tmp_var: 6, 10, 11, 19.
buf: 6,7, 8,9, 14, 17.

buf size: 2, 3, 7, 8.

c. 1.

cell: 5, 12, 18, 25.

cells: 6, 8, 9, 20.
cells_per_chunk: 5, 12, 18.
chunk: 5, 6, 12, 18.
chunk_struct: 5.

ch8: 4, 14, 22.

clause_done: 9.

clauses: 6, 8, 9, 10, 14, 17, 20, 21, 23.
ctime: 1.

cur_cell: 6, 10, 12, 18, 24, 25.
cur_chunk: 6, 12, 18, 25.

cur_tmp_var: 6, 10, 11, 14, 15, 19, 22, 25.

cur_vchunk: 6, 11, 19, 25.
empty_clause: 9, 14, 16.

exit: 3, 7,8,9, 11, 12, 14, 25.

fgets: 8.

foringf: 3,7,8,9, 11, 12, 14, 17, 20, 25.
free: 18, 19.

gb_init_rand: 7.

gb_next_rand: 13.

gb_rand: 2.

h: 1.

hack_clean: 24.

hack_in: 10.

hack_out: 24.

hash: 6, 7, 15.

hash_bits: 6, 13, 14.

hbits: 2, 3, 7, 8, 14.

i
VE
k:
kk: 1.

. 1.

level: 1.

. 1.

Ing: 4, 14, 15.
main: 1.

malloc: 7, 11, 12.
myclock: 1.

name: 4, 14, 15, 22.
new_chunk: 12.

new_vchunk: 11.

next: 4, 15.
nullclauses: 6, 8, 9, 17.

L

INDEX

octa: 4.

old_chunk: 18.

old_vchunk: 19.

p: 1, 10.

pp: 1.

prev: 4, 5, 11, 12, 18, 19, 25.
printf: 1, 17, 21, 22, 23, 24.

q: 1.
qq: L.
r: 1.

random_seed: 2, 3, 7.

sertal: 4, 15, 24.

sscanf: 3.

stamp: 4, 10, 15, 16.

stderr: 3, 7,8,9, 11, 12, 14, 17, 20, 25.
stdin: 6, 8.

strlen: 8.

time: 1.

tmp_var: 4, 5, 6, 7, 10, 24.
tmp_var_struct: 4.

uint: 1, 4, 6.

ullng: 1, 6, 10, 24.

u?2: 4.

var: 4, 11, 19, 25.

vars: 6, 8, 15, 17, 20, 21, 22.
vars_per_vchunk: 4, 11, 19.
vchunk: 4, 6, 11, 19.
vchunk_struct: 4.

verbose: 1, 2, 3.

11

12 NAMES OF THE SECTIONS SAT-TO-DIMACS

(Check consistency 25) Used in section 21.

(Find cur_tmp_var-name in the hash table at p 15) Used in section 10.

{ Global variables 2, 6) Used in section 1.

(Handle a duplicate literal 16) Used in section 10.

(Initialize everything 7, 13) Used in section 1.

(Input the clause in buf 9) Used in section 8.

(Input the clauses 8) Used in section 1.

(Install a new chunk 12) Used in section 10.

(Install a new vchunk 11) Used in section 10.

(Move cur_cell backward to the previous cell 18) Used in sections 17 and 24.

(Move cur_tmp_var backward to the previous temporary variable 19) Used in section 22.

(Output the clauses 21) Used in section 1.

(Process the command line 3) Used in section 1.

(Put the variable name beginning at buf[j] in cur_tmp_var-name and compute its hash code h 14) Used
in section 10.

(Remove all variables of the current clause 17) Used in section 9.

(Report the successful completion of the input phase 20) Used in section 1.

(Scan and record a variable; negate it if i =1 10) Used in section 9.

(Show the variable names as comments 22) Used in section 21.

(Translate all the temporary cells into the simple DIMACS form 23) Used in section 21.

(Translate the cells for the literals of clause ¢ 24) Used in section 23.

(Type definitions 4, 5) Used in section 1.

SAT-TO-DIMACS

Section Page

0T o 1 1
The T/O WIADDETttt e e e 4 3
The output phase 21 10

IdeX .o 26 11

