
§1 GB RAMAN INTRODUCTION 1

Important: Before reading GB RAMAN, please read or at least skim the program for GB GRAPH.

1. Introduction. This GraphBase module contains the raman subroutine, which creates a family of
“Ramanujan graphs” based on a theory developed by Alexander Lubotzky, Ralph Phillips, and Peter Sarnak
[see Combinatorica 8 (1988), 261–277].

Ramanujan graphs are defined by the following properties: They are connected, undirected graphs in which
every vertex has degree k, and every eigenvalue of the adjacency matrix is either ±k or has absolute value
≤ 2

√
k − 1. Such graphs are known to have good expansion properties, small diameter, and relatively small

independent sets; they cannot be colored with fewer than k/
(
2
√

k − 1
)
colors unless they are bipartite. The

particular examples of Ramanujan graphs constructed here are based on interesting properties of quaternions
with integer coefficients.
An example of the use of this procedure can be found in the demo program called GIRTH.

⟨ gb_raman.h 1 ⟩ ≡
extern Graph ∗raman ();

2. The subroutine call raman (p, q, type , reduce) constructs an undirected graph in which each vertex has
degree p + 1. The number of vertices is q + 1 if type = 1, or 1

2q(q + 1) if type = 2, or 1
2 (q − 1)q(q + 1) if

type = 3, or (q−1)q(q+1) if type = 4. The graph will be bipartite if and only if it has type 4. Parameters p
and q must be distinct prime numbers, and q must be odd. Furthermore there are additional restrictions: If
p = 2, the other parameter q must satisfy q mod 8 ∈ {1, 3} and q mod 13 ∈ {1, 3, 4, 9, 10, 12}; this rules out
about one fourth of all primes. Moreover, if type = 3 the value of p must be a quadratic residue modulo q;
in other words, there must be an integer x such that x2 ≡ p (mod q). If type = 4, the value of p must not
be a quadratic residue.
If you specify type = 0, the procedure will choose the largest permissible type (either 3 or 4); the value

of the type selected will appear as part of the string placed in the resulting graph’s id field. For example,
if type = 0, p = 2, and q = 43, a type 4 graph will be generated, because 2 is not a quadratic residue
modulo 43. This graph will have 44 × 43 × 42 = 79464 vertices, each of degree 3. (Notice that graphs of
types 3 and 4 can be quite large even when q is rather small.)

The largest permissible value of q is 46337; this is the largest prime whose square is less than 231. Of
course you would use it only for a graph of type 1.
If reduce is nonzero, loops and multiple edges will be suppressed. In this case the degrees of some vertices

might turn out to be less than p+ 1, in spite of what was said above.
Although type 4 graphs are bipartite, the vertices are not separated into two blocks as in other bipartite

graphs produced by GraphBase routines.
All edges of the graphs have length 1.

3. If the raman routine encounters a problem, it returns Λ (NULL), after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise raman returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }
#define dead panic(c)

{ gb free (working storage); panic(c); }
#define late panic(c)

{ gb recycle (new graph); dead panic(c); }

2 INTRODUCTION GB RAMAN §4

4. The C file gb_raman.c has the following general shape:

#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
⟨Preprocessor definitions ⟩
⟨Type declarations 18 ⟩
⟨Private variables and routines 6 ⟩
Graph ∗raman (p, q, type , reduce)

long p; /∗ one less than the desired degree; must be prime ∗/
long q; /∗ size parameter; must be prime and properly related to type ∗/
unsigned long type ; /∗ selector between different possible constructions ∗/
unsigned long reduce ; /∗ if nonzero, multiple edges and self-loops won’t occur ∗/

{ ⟨Local variables 5 ⟩
⟨Prepare tables for doing arithmetic modulo q 7 ⟩;
⟨Choose or verify the type , and determine the number n of vertices 12 ⟩;
⟨Set up a graph with n vertices, and assign vertex labels 13 ⟩;
⟨Compute p+ 1 generators that will define the graph’s edges 19 ⟩;
⟨Append the edges 26 ⟩;
if (gb trouble code) late panic(alloc fault);

/∗ oops, we ran out of memory somewhere back there ∗/
gb free (working storage);
return new graph ;
}

5. ⟨Local variables 5 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by raman ∗/
Area working storage ; /∗ place for auxiliary tables ∗/

See also section 9.

This code is used in section 4.

§6 GB RAMAN BRUTE FORCE NUMBER THEORY 3

6. Brute force number theory. Instead of using routines like Euclid’s algorithm to compute inverses
and square roots modulo q, we have plenty of time to build complete tables, since q is smaller than the
number of vertices we will be generating.
We will make three tables: q sqr [k] will contain k2 modulo q; q sqrt [k] will contain one of the values of√
k if k is a quadratic residue; and q inv [k] will contain the multiplicative inverse of k.

⟨Private variables and routines 6 ⟩ ≡
static long ∗q sqr ; /∗ squares ∗/
static long ∗q sqrt ; /∗ square roots (or −1 if not a quadratic residue) ∗/
static long ∗q inv ; /∗ reciprocals ∗/

See also sections 15, 20, 22, and 30.

This code is used in section 4.

7. ⟨Prepare tables for doing arithmetic modulo q 7 ⟩ ≡
if (q < 3 ∨ q > 46337) panic(very bad specs); /∗ q is way too small or way too big ∗/
if (p < 2) panic(very bad specs + 1); /∗ p is way too small ∗/
init area (working storage);
q sqr = gb typed alloc(3 ∗ q, long,working storage);
if (q sqr ≡ 0) panic(no room + 1);
q sqrt = q sqr + q;
q inv = q sqrt + q; /∗ note that gb alloc has initialized everything to zero ∗/
⟨Compute the q sqr and q sqrt tables 8 ⟩;
⟨Find a primitive root a, modulo q, and its inverse aa 10 ⟩;
⟨Compute the q inv table 11 ⟩;

This code is used in section 4.

8. ⟨Compute the q sqr and q sqrt tables 8 ⟩ ≡
for (a = 1; a < q; a++) q sqrt [a] = −1;
for (a = 1, aa = 1; a < q; aa = (aa + a+ a+ 1) % q, a++) {
q sqr [a] = aa ;
q sqrt [aa] = q − a; /∗ the smaller square root will survive ∗/
q inv [aa] = −1; /∗ we make q inv [aa] nonzero when aa can’t be a primitive root ∗/
}

This code is used in section 7.

9. ⟨Local variables 5 ⟩ +≡
register long a, aa , k; /∗ primary indices in loops ∗/
long b, bb , c, cc , d, dd ; /∗ secondary indices ∗/
long n; /∗ the number of vertices ∗/
long n factor ; /∗ either 1

2 (q − 1) (type 3) or q − 1 (type 4) ∗/
register Vertex ∗v; /∗ the current vertex of interest ∗/

4 BRUTE FORCE NUMBER THEORY GB RAMAN §10

10. Here we implicitly test that q is prime, by finding a primitive root whose powers generate everything.
If q is not prime, its smallest divisor will cause the inner loop in this step to terminate with k ≥ q, because
no power of that divisor will be congruent to 1.

⟨Find a primitive root a, modulo q, and its inverse aa 10 ⟩ ≡
for (a = 2; ; a++)
if (q inv [a] ≡ 0) {
for (b = a, k = 1; b ̸= 1 ∧ k < q; aa = b, b = (a ∗ b) % q, k++) q inv [b] = −1;
if (k ≥ q) dead panic(bad specs + 1); /∗ q is not prime ∗/
if (k ≡ q − 1) break; /∗ good, a is the primitive root we seek ∗/

}
This code is used in section 7.

11. As soon as we have discovered a primitive root, it is easy to generate all the inverses. (We could also
generate the discrete logarithms if we had a need for them.)

We set q inv [0] = q; this will be our internal representation of ∞.

⟨Compute the q inv table 11 ⟩ ≡
for (b = a, bb = aa ; b ̸= bb ; b = (a ∗ b) % q, bb = (aa ∗ bb) % q) q inv [b] = bb , q inv [bb] = b;
q inv [1] = 1;
q inv [b] = b; /∗ at this point b must equal q − 1 ∗/
q inv [0] = q;

This code is used in section 7.

12. The conditions we stated for validity of q when p = 2 are equivalent to the existence of
√
−2 and

√
13

modulo q, according to the law of quadratic reciprocity (see, for example, Fundamental Algorithms, exercise
1.2.4–47).

⟨Choose or verify the type , and determine the number n of vertices 12 ⟩ ≡
if (p ≡ 2) {
if (q sqrt [13 % q] < 0 ∨ q sqrt [q − 2] < 0) dead panic(bad specs + 2);

/∗ improper prime to go with p = 2 ∗/
}
if ((a = p % q) ≡ 0) dead panic(bad specs + 3); /∗ p divisible by q ∗/
if (type ≡ 0) type = (q sqrt [a] > 0 ? 3 : 4);
n factor = (type ≡ 3 ? (q − 1)/2 : q − 1);
switch (type) {
case 1: n = q + 1; break;
case 2: n = q ∗ (q + 1)/2; break;
default:
if ((q sqrt [a] > 0 ∧ type ̸= 3) ∨ (q sqrt [a] < 0 ∧ type ̸= 4))

dead panic(bad specs + 4); /∗ wrong type for p modulo q ∗/
if (q > 1289) dead panic(bad specs + 5); /∗ way too big for types 3, 4 ∗/
n = n factor ∗ q ∗ (q + 1);
break;
}
if (p ≥ (long)(#3fffffff/n)) dead panic(bad specs + 6); /∗ (p+ 1)n ≥ 230 ∗/

This code is used in section 4.

§13 GB RAMAN THE VERTICES 5

13. The vertices. Graphs of type 1 have vertices from the set {0, 1, . . . , q − 1,∞}, namely the integers
modulo q with an additional “infinite” element thrown in. The idea is to operate on these quantities by
adding constants, and/or multiplying by constants, and/or taking reciprocals, modulo q.
Graphs of type 2 have vertices that are unordered pairs of distinct elements from that same (q+1)-element

set.
Graphs of types 3 and 4 have vertices that are 2×2 matrices having nonzero determinants modulo q. The

determinants of type 3 matrices are, in fact, nonzero quadratic residues. We consider two matrices to be
equivalent if one is obtained from the other by multiplying all entries by a constant (modulo q); therefore we
will normalize all the matrices so that the second row is either (0, 1) or has the form (1, x) for some x. The
total number of equivalence classes of type 4 matrices obtainable in this way is (q + 1)q(q − 1), because we
can choose the second row in q+1 ways, after which there are two cases: Either the second row is (0, 1), and
we can select the upper right corner element arbitrarily and choose the upper left corner element nonzero;
or the second row is (1, x), and we can select the upper left corner element arbitrarily and then choose an
upper right corner element to make the determinant nonzero. For type 3 the counting is similar, except that
“nonzero” becomes “nonzero quadratic residue,” hence there are exactly half as many choices.
It is easy to verify that the equivalence classes of matrices that correspond to vertices in these graphs of

types 3 and 4 are closed under matrix multiplication. Therefore the vertices can be regarded as the elements
of finite groups. The type 3 group for a given q is often called the linear fractional group LF (2,Fq), or the
projective special linear group PSL(2,Fq), or the linear simple group L2(q); it can also be regarded as the
group of 2 × 2 matrices with determinant 1 (mod q), when the matrix A is considered equivalent to −A.
(This group is a simple group for all primes q > 2.) The type 4 group is officially known as the projective
general linear group of degree 2 over the field of q elements, PGL(2,Fq).

⟨Set up a graph with n vertices, and assign vertex labels 13 ⟩ ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) dead panic(no room); /∗ out of memory before we try to add edges ∗/
sprintf (new graph⃗ id , "raman(%ld,%ld,%lu,%lu)", p, q, type , reduce);
strcpy (new graph⃗util types , "ZZZIIZIZZZZZZZ");
v = new graph⃗vertices ;
switch (type) {
case 1: ⟨Assign labels from the set {0, 1, . . . , q − 1,∞} 14 ⟩; break;
case 2: ⟨Assign labels for pairs of distinct elements 16 ⟩; break;
default: ⟨Assign projective matrix labels 17 ⟩; break;
}

This code is used in section 4.

14. Type 1 graphs are the easiest to label. We store a serial number in utility field x.I, using q to
represent ∞.

⟨Assign labels from the set {0, 1, . . . , q − 1,∞} 14 ⟩ ≡
new graph⃗util types [4] = ’Z’;
for (a = 0; a < q; a++) {
sprintf (name buf , "%ld", a);
v⃗ name = gb save string (name buf);
v⃗ x.I = a;
v++;
}
v⃗ name = gb save string ("INF");
v⃗ x.I = q;
v++;

This code is used in section 13.

6 THE VERTICES GB RAMAN §15

15. ⟨Private variables and routines 6 ⟩ +≡
static char name buf [] = "(1111,1111;1,1111)"; /∗ place to form vertex names ∗/

16. The type 2 labels run from {0, 1} to {q − 1,∞}; we put the coefficients into x.I and y.I, where they
might prove useful in some applications.

⟨Assign labels for pairs of distinct elements 16 ⟩ ≡
for (a = 0; a < q; a++)
for (aa = a+ 1; aa ≤ q; aa++) {

if (aa ≡ q) sprintf (name buf , "{%ld,INF}", a);
else sprintf (name buf , "{%ld,%ld}", a, aa);
v⃗ name = gb save string (name buf);
v⃗ x.I = a; v⃗ y.I = aa ;
v++;

}
This code is used in section 13.

17. For graphs of types 3 and 4, we set the x.I and y.I fields to the elements of the first row of the matrix,
and we set the z.I field equal to the ratio of the elements of the second row (again with q representing ∞).

The vertices in this case consist of q(q+1) blocks of vertices having a given second row and a given element
in the upper left or upper right position. Within each block of vertices, the determinants are respectively
congruent modulo q to 12, 22, . . . , (q−1

2)2 in the case of type 3 graphs, or to 1, 2, . . . , q − 1 in the case of
type 4.

⟨Assign projective matrix labels 17 ⟩ ≡
new graph⃗util types [5] = ’I’;
for (c = 0; c ≤ q; c++)
for (b = 0; b < q; b++)
for (a = 1; a ≤ n factor ; a++) {
v⃗ z.I = c;
if (c ≡ q) { /∗ second row of matrix is (0, 1) ∗/
v⃗ y.I = b;
v⃗ x.I = (type ≡ 3 ? q sqr [a] : a); /∗ determinant is a2 or a ∗/
sprintf (name buf , "(%ld,%ld;0,1)", v⃗ x.I, b);
} else { /∗ second row of matrix is (1, c) ∗/
v⃗ x.I = b;
v⃗ y.I = (b ∗ c+ q − (type ≡ 3 ? q sqr [a] : a)) % q; /∗ determinant is a2 or a ∗/
sprintf (name buf , "(%ld,%ld;1,%ld)", b, v⃗ y.I, c);
}
v⃗ name = gb save string (name buf);
v++;

}
This code is used in section 13.

§18 GB RAMAN GROUP GENERATORS 7

18. Group generators. We will define a set of p+1 permutations {π0, π1, . . . , πp} of the vertices, such
that the arcs of our graph will go from v to vπk for 0 ≤ k ≤ p. Thus, each path in the graph will be defined
by a product of permutations; the cycles of the graph will correspond to vertices that are left fixed by a
product of permutations. The graph will be undirected, because the inverse of each πk will also be one of
the permutations of the generating set.
In fact, each permutation πk will be defined by a 2×2 matrix. For graphs of types 3 and 4, the permutations

will therefore correspond to certain vertices, and the vertex vπk will simply be the product of matrix v by
matrix πk.
For graphs of type 1, the permutations will be defined by linear fractional transformations, which are

mappings of the form

v 7−→ av + b

cv + d
mod q .

This transformation applies to all v ∈ {0, 1, . . . , q − 1,∞}, under the usual conventions that x/0 =∞ when
x ̸= 0 and (x∞ + x′)/(y∞ + y′) = x/y. The composition of two such transformations is again a linear
fractional transformation, corresponding to the product of the two associated matrices

(
a b
c d

)
.

Graphs of type 2 will be handled just like graphs of type 1, except that we will compute the images of
two distinct points v = {v1, v2} under the linear fractional transformation. The two images will be distinct,
because the transformation is invertible.
When p = 2, a special set of three generating matrices π0, π1, π2 can be shown to define Ramanujan graphs;

these matrices are described below. Otherwise p is odd, and the generators are based on the theory of integral
quaternions. Integral quaternions, for our purposes, are quadruples of the form α = a0+a1i+a2j+a3k, where
a0, a1, a2, and a3 are integers; we multiply them by using the associative but noncommutative multiplication
rules i2 = j2 = k2 = ijk = −1. If we write α = a + A, where a is the “scalar” a0 and A is the “vector”
a1i+ a2j + a3k, the product of quaternions α = a+A and β = b+B can be expressed as

(a+A)(b+B) = ab−A ·B + aB + bA+A×B ,

where A ·B and A×B are the usual dot product and cross product of vectors. The conjugate of α = a+A
is α = a − A, and we have αα = a20 + a21 + a22 + a23. This important quantity is called N(α), the norm of
α. It is not difficult to verify that N(αβ) = N(α)N(β), because of the basic identity αβ = β α and the fact
that αx = xα when x is scalar.

Integral quaternions have a beautiful theory; for example, there is a nice variant of Euclid’s algorithm by
which we can compute the greatest common left divisor of any two integral quaternions having odd norm.
This algorithm makes it possible to prove that integral quaternions whose coefficients are relatively prime
can be canonically factored into quaternions whose norm is prime. However, the details of that theory
are beyond the scope of this documentation. It will suffice for our purposes to observe that we can use
quaternions to define the finite groups PSL(2,Fq) and PGL(2,Fq) in a different way from the definitions
given earlier: Suppose we consider two quaternions to be equivalent if one is a nonzero scalar multiple of the
other, modulo q. Thus, for example, if q = 3 we consider 1 + 4i− j to be equivalent to 1 + i+ 2j, and also
equivalent to 2 + 2i + j. It turns out that there are exactly (q + 1)q(q − 1) such equivalence classes, when
we omit quaternions whose norm is a multiple of q; and they form a group under quaternion multiplication
that is the same as the projective group of 2× 2 matrices under matrix multiplication, modulo q. One way
to prove this is by means of the one-to-one correspondence

a0 + a1i+ a2j + a3k ←→
(

a0 + a1g + a3h a2 + a3g − a1h
−a2 + a3g − a1h a0 − a1g − a3h

)
,

where g and h are integers with g2 + h2 ≡ −1 (mod q).
Jacobi proved that the number of ways to represent any odd number p as a sum of four squares a20 + a21 +

a22 + a23 is 8 times the sum of divisors of p. [This fact appears in the concluding sentence of his monumental
work Fundamenta Nova Theoriæ Functionum Ellipticorum, Königsberg, 1829.] In particular, when p is
prime, the number of such representations is 8(p+1); in other words, there are exactly 8(p+1) quaternions

8 GROUP GENERATORS GB RAMAN §18

α = a0+a1i+a2j+a3k with N(α) = p. These quaternions form p+1 equivalence classes under multiplication
by the eight “unit quaternions” {±1,±i,±j,±k}. We will select one element from each equivalence class,
and the resulting p + 1 quaternions will correspond to p + 1 matrices, which will generate the p + 1 arcs
leading from each vertex in the graphs to be constructed.

⟨Type declarations 18 ⟩ ≡
typedef struct {
long a0 , a1 , a2 , a3 ; /∗ coefficients of a quaternion ∗/
unsigned long bar ; /∗ the index of the inverse (conjugate) quaternion ∗/
} quaternion;

This code is used in section 4.

19. A global variable gen count will be declared below, indicating the number of generators found so far.
When p isn’t prime, we will find more than p+ 1 solutions, so we allocate an extra slot in the gen table to
hold a possible overflow entry.

⟨Compute p+ 1 generators that will define the graph’s edges 19 ⟩ ≡
gen = gb typed alloc(p+ 2,quaternion,working storage);
if (gen ≡ Λ) late panic(no room + 2); /∗ not enough memory ∗/
gen count = 0; max gen count = p+ 1;
if (p ≡ 2) ⟨Fill the gen table with special generators 25 ⟩
else ⟨Fill the gen table with representatives of all quaternions having norm p 21 ⟩;
if (gen count ̸= max gen count) late panic(bad specs + 7); /∗ p is not prime ∗/

This code is used in section 4.

20. ⟨Private variables and routines 6 ⟩ +≡
static quaternion ∗gen ; /∗ table of the p+ 1 generators ∗/

21. As mentioned above, quaternions of norm p come in sets of 8, differing from each other only by unit
multiples; we need to choose one of the 8. Suppose a20 + a21 + a22 + a23 = p. If p mod 4 = 1, exactly one of
the a’s will be odd; so we call it a0 and assign it a positive sign. When p mod 4 = 3, exactly one of the
a’s will be even; we call it a0, and if it is nonzero we make it positive. If a0 = 0, we make sure that one
of the others—say the rightmost appearance of the largest one—is positive. In this way we obtain a unique
representative from each set of 8 equivalent quaternions.
For example, the four quaternions of norm 3 are ± i± j + k; the six of norm 5 are 1± 2i, 1± 2j, 1± 2k.
In the program here we generate solutions to a2 + b2 + c2 + d2 = p when a ̸≡ b ≡ c ≡ d (mod 2) and

b ≤ c ≤ d. The variables aa , bb , and cc hold the respective values p − a2 − b2 − c2 − d2, p − a2 − 3b2, and
p− a2 − 2c2. The for statements use the fact that a2 increases by 4(a+ 1) when a increases by 2.

⟨Fill the gen table with representatives of all quaternions having norm p 21 ⟩ ≡
{ long sa , sb ; /∗ p− a2, p− a2 − b2 ∗/
long pp = (p≫ 1) & 1; /∗ 0 if p mod 4 = 1, 1 if p mod 4 = 3 ∗/
for (a = 1− pp , sa = p− a; sa > 0; sa −= (a+ 1)≪ 2, a += 2)
for (b = pp , sb = sa − b, bb = sb − b− b; bb ≥ 0; bb −= 12 ∗ (b+ 1), sb −= (b+ 1)≪ 2, b += 2)
for (c = b, cc = bb ; cc ≥ 0; cc −= (c+ 1)≪ 3, c += 2)
for (d = c, aa = cc ; aa ≥ 0; aa −= (d+ 1)≪ 2, d += 2)
if (aa ≡ 0) ⟨Deposit the quaternions associated with a+ bi+ cj + dk 23 ⟩;

⟨Change the gen table to matrix format 24 ⟩;
}

This code is used in section 19.

§22 GB RAMAN GROUP GENERATORS 9

22. If a > 0 and 0 < b < c < d, we obtain 48 different classes of quaternions having the same norm by
permuting {b, c, d} in six ways and attaching signs to each permutation in eight ways. This happens, for
example, when p = 71 and (a, b, c, d) = (6, 1, 3, 5). Fewer quaternions arise when a = 0 or 0 = b or b = c or
c = d.
The inverse of the matrix corresponding to a quaternion is the matrix corresponding to the conjugate

quaternion. Therefore a generating matrix πk will be its own inverse if and only if it comes from a quaternion
with a = 0.
It is convenient to have a subroutine that deposits a new quaternion and its conjugate into the table of

generators.

⟨Private variables and routines 6 ⟩ +≡
static unsigned long gen count ; /∗ the next available quaternion slot ∗/
static unsigned long max gen count ; /∗ p+ 1, stored as a global variable ∗/
static void deposit (a, b, c, d)

long a, b, c, d; /∗ a solution to a2 + b2 + c2 + d2 = p ∗/
{
if (gen count ≥ max gen count) /∗ oops, we already found p+ 1 solutions ∗/

gen count = max gen count + 1; /∗ this will happen only if p isn’t prime ∗/
else {
gen [gen count].a0 = gen [gen count + 1].a0 = a;
gen [gen count].a1 = b; gen [gen count + 1].a1 = −b;
gen [gen count].a2 = c; gen [gen count + 1].a2 = −c;
gen [gen count].a3 = d; gen [gen count + 1].a3 = −d;
if (a) {
gen [gen count].bar = gen count + 1;
gen [gen count + 1].bar = gen count ;
gen count += 2;

} else {
gen [gen count].bar = gen count ;
gen count ++;

}
}
}

10 GROUP GENERATORS GB RAMAN §23

23. ⟨Deposit the quaternions associated with a+ bi+ cj + dk 23 ⟩ ≡
{
deposit (a, b, c, d);
if (b) {

deposit (a,−b, c, d); deposit (a,−b,−c, d);
}
if (c) deposit (a, b,−c, d);
if (b < c) {

deposit (a, c, b, d); deposit (a,−c, b, d); deposit (a, c, d, b); deposit (a,−c, d, b);
if (b) {

deposit (a, c,−b, d); deposit (a,−c,−b, d); deposit (a, c, d,−b); deposit (a,−c, d,−b);
}

}
if (c < d) {
deposit (a, b, d, c); deposit (a, d, b, c);
if (b) {

deposit (a,−b, d, c); deposit (a,−b, d,−c); deposit (a, d,−b, c); deposit (a, d,−b,−c);
}
if (c) {
deposit (a, b, d,−c); deposit (a, d, b,−c);

}
if (b < c) {

deposit (a, d, c, b); deposit (a, d,−c, b);
if (b) {
deposit (a, d, c,−b); deposit (a, d,−c,−b);
}

}
}
}

This code is used in section 21.

§24 GB RAMAN GROUP GENERATORS 11

24. Once we’ve found the generators in quaternion form, we want to convert them to 2× 2 matrices, using
the correspondence mentioned earlier:

a0 + a1i+ a2j + a3k ←→
(

a0 + a1g + a3h a2 + a3g − a1h
−a2 + a3g − a1h a0 − a1g − a3h

)
,

where g and h are integers with g2 + h2 ≡ −1 (mod q). Appropriate values for g and h can always be found
by the formulas

g =
√
k and h =

√
q − 1− k,

where k is the largest quadratic residue modulo q. For if q− 1 is not a quadratic residue, and if k+1 isn’t a
residue either, then q−1−k must be a quadratic residue because it is congruent to the product (q−1)(k+1)
of nonresidues. (We will have h = 0 if and only if q mod 4 = 1; h = 1 if and only if q mod 8 = 3; h =

√
2 if

and only if q mod 24 = 7 or 15; etc.)

⟨Change the gen table to matrix format 24 ⟩ ≡
{ register long g, h;
long a00 , a01 , a10 , a11 ; /∗ entries of 2× 2 matrix ∗/
for (k = q − 1; q sqrt [k] < 0; k−−) ; /∗ find the largest quadratic residue, k ∗/
g = q sqrt [k]; h = q sqrt [q − 1− k];
for (k = p; k ≥ 0; k−−) {
a00 = (gen [k].a0 + g ∗ gen [k].a1 + h ∗ gen [k].a3) % q;
if (a00 < 0) a00 += q;
a11 = (gen [k].a0 − g ∗ gen [k].a1 − h ∗ gen [k].a3) % q;
if (a11 < 0) a11 += q;
a01 = (gen [k].a2 + g ∗ gen [k].a3 − h ∗ gen [k].a1) % q;
if (a01 < 0) a01 += q;
a10 = (−gen [k].a2 + g ∗ gen [k].a3 − h ∗ gen [k].a1) % q;
if (a10 < 0) a10 += q;
gen [k].a0 = a00 ; gen [k].a1 = a01 ; gen [k].a2 = a10 ; gen [k].a3 = a11 ;

}
}

This code is used in section 21.

25. When p = 2, the following three appropriate generating matrices have been found by Patrick Chiu:(
1 0
0 −1

)
,

(
2 + s t
t 2− s

)
, and

(
2− s −t
−t 2 + s

)
,

where s2 ≡ −2 and t2 ≡ −26 (mod q). The determinants of these matrices are respectively −1, 32, and 32;
the product of the second and third matrices is 32 times the identity matrix. Notice that when 2 is a
quadratic residue (this happens when q = 8k + 1), the determinants are all quadratic residues, so we get a
graph of type 3. When 2 is a quadratic nonresidue (which happens when q = 8k + 3), the determinants are
all nonresidues, so we get a graph of type 4.

⟨Fill the gen table with special generators 25 ⟩ ≡
{ long s = q sqrt [q − 2], t = (q sqrt [13 % q] ∗ s) % q;

gen [0].a0 = 1; gen [0].a1 = gen [0].a2 = 0; gen [0].a3 = q − 1; gen [0].bar = 0;
gen [1].a0 = gen [2].a3 = (2 + s) % q;
gen [1].a1 = gen [1].a2 = t;
gen [2].a1 = gen [2].a2 = q − t;
gen [1].a3 = gen [2].a0 = (q + 2− s) % q;
gen [1].bar = 2; gen [2].bar = 1;
gen count = 3;
}

This code is used in section 19.

12 CONSTRUCTING THE EDGES GB RAMAN §26

26. Constructing the edges. The remaining task is to use the permutations defined by the gen table
to create the arcs of the graph and their inverses.
The ref fields in each arc will refer to the permutation leading to the arc. In most cases each vertex v will

have degree exactly p+1, and the edges emanating from it will appear in a linked list having the respective
ref fields 0, 1, . . . , p in order. However, if reduce is nonzero, self-loops and multiple edges will be eliminated,
so the degree might be less than p + 1; in this case the ref fields will still be in ascending order, but some
generators won’t be referenced.
There is a subtle case where reduce = 0 but the degree of a vertex might actually be greater than p+1. We

want the graph g generated by raman to satisfy the conventions for undirected graphs stated in GB GRAPH;
therefore, if any of the generating permutations has a fixed point, we will create two arcs for that fixed point,
and the corresponding vertex v will have an edge running to itself. Since each edge consists of two arcs,
such an edge will produce two consecutive entries in the list v⃗ arcs . If the generating permutation happens
to be its own inverse, there will be two consecutive entries with the same ref field; this means there will
be more than p + 1 entries in v⃗ arcs , and the total number of arcs g⃗ m will exceed (p + 1)n. Self-inverse
generating permutations arise only when p = 2 or when p is expressible as a sum of three odd squares (hence
p mod 8 = 3); and such permutations will have fixed points only when type < 3. Therefore this anomaly
does not arise often. But it does occur, for example, in the smallest graph generated by raman , namely
when p = 2, q = 3, and type = 1, when there are 4 vertices and 14 (not 12) arcs.

#define ref a.I /∗ the ref field of an arc refers to its permutation number ∗/
⟨Append the edges 26 ⟩ ≡

for (k = p; k ≥ 0; k−−) { long kk ;

if ((kk = gen [k].bar) ≤ k) /∗ we assume that kk = k or kk = k − 1 ∗/
for (v = new graph⃗vertices ; v < new graph⃗vertices + n; v++) {

register Vertex ∗u;
⟨Compute the image, u, of v under the permutation defined by gen [k] 27 ⟩;
if (u ≡ v) {
if (¬reduce) {
gb new edge (v, v, 1L);
v⃗ arcs⃗ ref = kk ; (v⃗ arcs + 1)⃗ ref = k;
/∗ see the remarks above regarding the case kk = k ∗/

}
} else { register Arc ∗ap ;
if (u⃗ arcs ∧ u⃗ arcs⃗ ref ≡ kk) continue;

/∗ kk = k and we’ve already done this two-cycle ∗/
else if (reduce)
for (ap = v⃗ arcs ; ap ; ap = ap⃗ next)

if (ap⃗ tip ≡ u) goto done ; /∗ there’s already an edge between u and v ∗/
gb new edge (v, u, 1L);
v⃗ arcs⃗ ref = k; u⃗ arcs⃗ ref = kk ;
if ((ap = v⃗ arcs⃗ next) ̸= Λ ∧ ap⃗ ref ≡ kk) {
v⃗ arcs⃗ next = ap⃗ next ; ap⃗ next = v⃗ arcs ; v⃗ arcs = ap ;

} /∗ now the v⃗ arcs list has ref fields in order again ∗/
done : ;
}

}
}

This code is used in section 4.

§27 GB RAMAN CONSTRUCTING THE EDGES 13

27. For graphs of types 3 and 4, our job is to compute a 2 × 2 matrix product, reduce it modulo q, and
find the appropriate equivalence class u.

⟨Compute the image, u, of v under the permutation defined by gen [k] 27 ⟩ ≡
if (type < 3)
⟨Compute the image, u, of v under the linear fractional transformation defined by gen [k] 31 ⟩

else { long a00 = gen [k].a0 , a01 = gen [k].a1 , a10 = gen [k].a2 , a11 = gen [k].a3 ;

a = v⃗ x.I; b = v⃗ y.I;
if (v⃗ z.I ≡ q) c = 0, d = 1;
else c = 1, d = v⃗ z.I;
⟨Compute the matrix product (aa , bb ; cc , dd) = (a, b; c, d) ∗ (a00 , a01 ; a10 , a11) 28 ⟩;
a = (cc ? q inv [cc] : q inv [dd]); /∗ now a is a normalization factor ∗/
d = (a ∗ dd) % q; c = (a ∗ cc) % q; b = (a ∗ bb) % q; a = (a ∗ aa) % q;
⟨Set u to the vertex whose label is (a, b; c, d) 29 ⟩;
}

This code is used in section 26.

28. ⟨Compute the matrix product (aa , bb ; cc , dd) = (a, b; c, d) ∗ (a00 , a01 ; a10 , a11) 28 ⟩ ≡
aa = (a ∗ a00 + b ∗ a10) % q;
bb = (a ∗ a01 + b ∗ a11) % q;
cc = (c ∗ a00 + d ∗ a10) % q;
dd = (c ∗ a01 + d ∗ a11) % q;

This code is used in section 27.

29. ⟨Set u to the vertex whose label is (a, b; c, d) 29 ⟩ ≡
if (c ≡ 0) d = q, aa = a;
else {
aa = (a ∗ d− b) % q;
if (aa < 0) aa += q;
b = a;
} /∗ now aa is the determinant of the matrix ∗/
u = new graph⃗vertices + ((d ∗ q + b) ∗ n factor + (type ≡ 3 ? q sqrt [aa] : aa)− 1);

This code is used in section 27.

14 LINEAR FRACTIONAL TRANSFORMATIONS GB RAMAN §30

30. Linear fractional transformations. Given a nonsingular 2× 2 matrix
(
a b
c d

)
, the linear fractional

transformation z 7→ (az + b)/(cz + d) is defined modulo q by the following subroutine. We assume that the
matrix

(
a b
c d

)
appears in row k of the gen table.

⟨Private variables and routines 6 ⟩ +≡
static long lin frac(a, k)

long a; /∗ the number being transformed; q represents ∞ ∗/
long k; /∗ index into gen table ∗/

{ register long q = q inv [0]; /∗ the modulus ∗/
long a00 = gen [k].a0 , a01 = gen [k].a1 , a10 = gen [k].a2 , a11 = gen [k].a3 ; /∗ the coefficients ∗/
register long num , den ; /∗ numerator and denominator ∗/
if (a ≡ q) num = a00 , den = a10 ;
else num = (a00 ∗ a+ a01) % q, den = (a10 ∗ a+ a11) % q;
if (den ≡ 0) return q;
else return (num ∗ q inv [den]) % q;
}

31. We are computing the same values of lin frac over and over again in type 2 graphs, but the author
was too lazy to optimize this.

⟨Compute the image, u, of v under the linear fractional transformation defined by gen [k] 31 ⟩ ≡
if (type ≡ 1) u = new graph⃗vertices + lin frac(v⃗ x.I, k);
else {
a = lin frac(v⃗ x.I, k); aa = lin frac(v⃗ y.I, k);
u = new graph⃗vertices + (a < aa ? (a ∗ (2 ∗ q − 1− a))/2 + aa − 1 : (aa ∗ (2 ∗ q − 1− aa))/2 + a− 1);
}

This code is used in section 27.

§32 GB RAMAN INDEX 15

32. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 9, 22, 30.
aa : 8, 9, 10, 11, 16, 21, 27, 28, 29, 31.
alloc fault : 4.
ap : 26.
Arc: 26.
arcs : 26.
Area: 5.
a0 : 18, 22, 24, 25, 27, 30.
a00 : 24, 27, 28, 30.
a01 : 24, 27, 28, 30.
a1 : 18, 22, 24, 25, 27, 30.
a10 : 24, 27, 28, 30.
a11 : 24, 27, 28, 30.
a2 : 18, 22, 24, 25, 27, 30.
a3 : 18, 22, 24, 25, 27, 30.
b: 9, 22.
bad specs : 10, 12, 19.
bar : 18, 22, 25, 26.
bb : 9, 11, 21, 27, 28.
c: 9, 22.
cc : 9, 21, 27, 28.
Chiu, Patrick: 25.
d: 9, 22.
dd : 9, 27, 28.
dead panic : 3, 10, 12, 13.
den : 30.
deposit : 22, 23.
done : 26.
g: 24.
gb alloc : 7.
gb free : 3, 4.
gb new edge : 26.
gb new graph : 13.
gb recycle : 3.
gb save string : 14, 16, 17.
gb trouble code : 3, 4.
gb typed alloc : 7, 19.
gen : 19, 20, 22, 24, 25, 26, 27, 30.
gen count : 19, 22, 25.
Graph: 1, 4, 5.
h: 24.
id : 2, 13.
init area : 7.
Jacobi, Carl Gustav Jacob: 18.
k: 9, 30.
kk : 26.
late panic : 3, 4, 19.
lin frac : 30, 31.
Lubotzky, Alexander: 1.
max gen count : 19, 22.
n: 9.

n factor : 9, 12, 17, 29.
name : 14, 16, 17.
name buf : 14, 15, 16, 17.
new graph : 3, 4, 5, 13, 14, 17, 26, 29, 31.
next : 26.
no room : 7, 13, 19.
num : 30.
p: 4.
panic : 3, 7.
panic code : 3.
Phillips, Ralph Saul: 1.
pp : 21.
q: 4, 30.
q inv : 6, 7, 8, 10, 11, 27, 30.
q sqr : 6, 7, 8, 17.
q sqrt : 6, 7, 8, 12, 24, 25, 29.
quaternion: 18, 19, 20.
raman : 1, 2, 3, 4, 5, 26.
Ramanujan graphs: 1.
reduce : 2, 4, 13, 26.
ref : 26.
s: 25.
sa : 21.
Sarnak, Peter: 1.
sb : 21.
sprintf : 13, 14, 16, 17.
strcpy : 13.
t: 25.
tip : 26.
type : 2, 4, 12, 13, 17, 26, 27, 29, 31.
u: 26.
util types : 13, 14, 17.
v: 9.
Vertex: 9, 26.
vertices : 13, 26, 29, 31.
very bad specs : 7.
working storage : 3, 4, 5, 7, 19.

16 NAMES OF THE SECTIONS GB RAMAN

⟨Append the edges 26 ⟩ Used in section 4.

⟨Assign labels for pairs of distinct elements 16 ⟩ Used in section 13.

⟨Assign labels from the set {0, 1, . . . , q − 1,∞} 14 ⟩ Used in section 13.

⟨Assign projective matrix labels 17 ⟩ Used in section 13.

⟨Change the gen table to matrix format 24 ⟩ Used in section 21.

⟨Choose or verify the type , and determine the number n of vertices 12 ⟩ Used in section 4.

⟨Compute the image, u, of v under the linear fractional transformation defined by gen [k] 31 ⟩ Used in

section 27.

⟨Compute the image, u, of v under the permutation defined by gen [k] 27 ⟩ Used in section 26.

⟨Compute the matrix product (aa , bb ; cc , dd) = (a, b; c, d) ∗ (a00 , a01 ; a10 , a11) 28 ⟩ Used in section 27.

⟨Compute the q inv table 11 ⟩ Used in section 7.

⟨Compute the q sqr and q sqrt tables 8 ⟩ Used in section 7.

⟨Compute p+ 1 generators that will define the graph’s edges 19 ⟩ Used in section 4.

⟨Deposit the quaternions associated with a+ bi+ cj + dk 23 ⟩ Used in section 21.

⟨Fill the gen table with representatives of all quaternions having norm p 21 ⟩ Used in section 19.

⟨Fill the gen table with special generators 25 ⟩ Used in section 19.

⟨Find a primitive root a, modulo q, and its inverse aa 10 ⟩ Used in section 7.

⟨Local variables 5, 9 ⟩ Used in section 4.

⟨Prepare tables for doing arithmetic modulo q 7 ⟩ Used in section 4.

⟨Private variables and routines 6, 15, 20, 22, 30 ⟩ Used in section 4.

⟨Set up a graph with n vertices, and assign vertex labels 13 ⟩ Used in section 4.

⟨Set u to the vertex whose label is (a, b; c, d) 29 ⟩ Used in section 27.

⟨Type declarations 18 ⟩ Used in section 4.

⟨ gb_raman.h 1 ⟩

May 19, 2018 at 02:29

GB RAMAN
Section Page

Introduction . 1 1
Brute force number theory . 6 3
The vertices . 13 5
Group generators . 18 7
Constructing the edges . 26 12
Linear fractional transformations . 30 14
Index . 32 15

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

