
§1 GB SAVE INTRODUCTION 1

Important: Before reading GB SAVE, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the code for two special utility routines, save graph
and restore graph , which convert graphs back and forth between the internal representation that is described
in GB GRAPH and a symbolic file format that is described below. Researchers can use these routines to
transmit graphs between computers in a machine-independent way, or to use GraphBase graphs with other
graph manipulation software that supports the same symbolic format.
All kinds of tricks are possible in the C language, so it is easy to abuse the GraphBase conventions and to

create data structures that make sense only on a particular machine. But if users follow the recommended
ground rules, save graph will be able to transform their graphs into files that any other GraphBase installation
will be able to read with restore graph . The graphs created on remote machines will then be semantically
equivalent to the originals.
Restrictions: Strings must contain only standard printable characters, not including \ or " or newline, and

must be at most 4095 characters long; the g⃗ id string should be at most 154 characters long. All pointers
to vertices and arcs must be confined to blocks within the g⃗ data area; blocks within g⃗ aux data are not
saved or restored. Storage blocks in g⃗ data must be “pure”; that is, each block must be entirely devoted
either to Vertex records, or to Arc records, or to characters of strings. The save graph procedure places
all Vertex records into a single Vertex block and all Arc records into a single Arc block, preserving the
relative order of the original records where possible; but it does not preserve the relative order of string data
in memory. For example, if u⃗ name and v⃗ name point to the same memory location in the saved graph,
they will point to different memory locations (representing equal strings) in the restored graph. All utility
fields must conform to the conventions of the graph’s util types string; the G option, which leads to graphs
within graphs, is not permitted in that string.

#define MAX_SV_STRING 4095 /∗ longest strings supported ∗/
#define MAX_SV_ID 154 /∗ longest id supported, is less than ID_FIELD_SIZE ∗/
⟨ gb_save.h 1 ⟩ ≡
extern long save graph ();
extern Graph ∗restore graph ();

2. Here is an overview of the C code, gb_save.c, for this module:

#include "gb_io.h" /∗ we use the input/output conventions of GB IO ∗/
#include "gb_graph.h" /∗ and, of course, the data structures of GB GRAPH ∗/
⟨Preprocessor definitions ⟩
⟨Type declarations 21 ⟩
⟨Private variables 8 ⟩
⟨Private functions 7 ⟩
⟨External functions 4 ⟩

2 EXTERNAL REPRESENTATION OF GRAPHS GB SAVE §3

3. External representation of graphs. The internal representation of graphs has been described in
GB GRAPH. We now need to supplement that description by devising an alternative format suitable for
human-and-machine-readable files.
The following somewhat contrived example illustrates the simple conventions that we shall follow:

* GraphBase graph (util_types IZAZZZZVZZZZSZ,3V,4A)

"somewhat_contrived_example(3.14159265358979323846264338327\

9502884197169399375105820974944592307816406286208998628)",1,

3,"pi"

* Vertices

"look",A0,15,A1

"feel",0,−9,A1

"",0,0,0

* Arcs

V0,A2,3,V1

V1,0,5,0

V1,0,−8,1

0,0,0,0

* Checksum 271828

The first line specifies the 14 characters of util types and the total number of Vertex and Arc records; in
this case there are 3 vertices and 4 arcs. The next line or lines specify the id , n, and m fields of the Graph
record, together with any utility fields that are not being ignored. In this case, the id is a rather long string;
a string may be broken into parts by ending the initial parts with a backslash, so that no line of the file has
more than 79 characters. The last six characters of util types refer to the utility fields of the Graph record,
and in this case they are ZZZZSZ; so all utility fields are ignored except the second-to-last, yy , which is of
type string. The restore graph routine will construct a Graph record g from this example in which g⃗ n = 1,
g⃗ m = 3, and g⃗ yy .S = "pi".
Notice that the individual field values for a record are separated by commas. If a line ends with a comma,

the following line contains additional fields of the same record.
After the Graph record fields have been specified, there’s a special line ‘*␣Vertices’, after which we learn

the fields of each vertex in turn. First comes the name field, then the arcs field, and then any non-ignored
utility fields. In this example the util types for Vertex records are IZAZZZ, so the utility field values are
u.I and w.A. Let v point to the first Vertex record (which incidentally is also pointed to by g⃗ vertices),
and let a point to the first Arc record. Then in this example we will have v⃗ name = "look", v⃗ arcs = a,
v⃗ u.I = 15, and v⃗ w.A = (a+ 1).
After the Vertex records comes a special line ‘*␣Arcs’, followed by the fields of each Arc record in an

entirely analogous way. First comes the tip field, then the next field, then the len , and finally the utility
fields (if any). In this example the util types for Arc utility fields are ZV; hence field a is ignored, and field b
is a pointer to a Vertex. We will have a⃗ tip = v, a⃗ next = (a+ 2), a⃗ len = 3, and a⃗ b.V = (v + 1).

The null pointer Λ is denoted by 0. Furthermore, a Vertex pointer is allowed to have the special value 1,
because of conventions explained in GB GATES. (This special value appears in the fourth field of the third
arc in the example above.) The restore graph procedure does not allow Vertex pointers to take on constant
values greater than 1, nor does it permit the value ‘1’ where an Arc pointer ought to be.

There should be exactly as many Vertex and Arc specifications as indicated after the utility types at the
beginning of the file. The final Arc should then be followed by a special checksum line, which must contain
either a number consistent with the data on all the previous lines or a negative value (which is not checked).
All information after the checksum line is ignored.
Users should not edit the files produced by save graph , because an incorrect checksum is liable to ruin

everything. However, additional lines beginning with ‘*’ may be placed as comments at the very beginning
of the file; such lines are immune to checksumming.

§4 GB SAVE EXTERNAL REPRESENTATION OF GRAPHS 3

4. We can establish these conventions firmly in mind by writing the restore graph routine before we write
save graph . The subroutine call restore graph ("foo.gb") produces a pointer to the graph defined in file
"foo.gb", or a null pointer in case that file is unreadable or incorrect. In the latter case, panic code
indicates the problem.

⟨External functions 4 ⟩ ≡
Graph ∗restore graph (f)

char ∗f ; /∗ the file name ∗/
{ Graph ∗g = Λ; /∗ the graph being restored ∗/
register char ∗p; /∗ register for string manipulation ∗/
long m; /∗ the number of Arc records to allocate ∗/
long n; /∗ the number of Vertex records to allocate ∗/
⟨Open the file and parse the first line; goto sorry if there’s trouble 5 ⟩;
⟨Create the Graph record g and fill in its fields 6 ⟩;
⟨Fill in the fields of all Vertex records 16 ⟩;
⟨Fill in the fields of all Arc records 17 ⟩;
⟨Check the checksum and close the file 18 ⟩;
return g;

sorry : gb raw close (); gb recycle (g); return Λ;
}

See also section 20.

This code is used in section 2.

5. As mentioned above, users can add comment lines at the beginning of the file, if they put a * at the
beginning of every such line. But the line that precedes the data proper must adhere to strict standards.

#define panic(c) { panic code = c; goto sorry ; }
⟨Open the file and parse the first line; goto sorry if there’s trouble 5 ⟩ ≡

gb raw open (f);
if (io errors) panic(early data fault); /∗ can’t open the file ∗/
while (1) {
gb string (str buf , ’)’);
if (sscanf (str buf , "*␣GraphBase␣graph␣(util_types␣%14[ZIVSA],%ldV,%ldA", str buf + 80,&n,

&m) ≡ 3 ∧ strlen (str buf + 80) ≡ 14) break;
if (str buf [0] ̸= ’*’) panic(syntax error); /∗ first line is unreadable ∗/

}
This code is used in section 4.

4 EXTERNAL REPRESENTATION OF GRAPHS GB SAVE §6

6. The previous code has placed the graph’s util types into location str buf +80 and verified that it contains
precisely 14 characters, all belonging to the set {Z, I, V, S, A}.
⟨Create the Graph record g and fill in its fields 6 ⟩ ≡
g = gb new graph (0L);
if (g ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
gb free (g⃗ data);
g⃗ vertices = verts = gb typed alloc(n ≡ 0 ? 1 : n,Vertex, g⃗ data);
last vert = verts + n;
arcs = gb typed alloc(m ≡ 0 ? 1 : m,Arc, g⃗ data);
last arc = arcs +m;
if (gb trouble code) panic(no room + 1); /∗ not enough room for vertices and arcs ∗/
strcpy (g⃗ util types , str buf + 80);
gb newline ();
if (gb char () ̸= ’"’) panic(syntax error + 1); /∗ missing quotes before graph id string ∗/
p = gb string (g⃗ id , ’"’);
if (∗(p− 2) ≡ ’\n’ ∧ ∗(p− 3) ≡ ’\\’ ∧ p > g⃗ id + 2) {
gb newline ();
gb string (p− 3, ’"’);

}
if (gb char () ̸= ’"’) panic(syntax error + 2); /∗ missing quotes after graph id string ∗/
⟨Fill in g⃗ n, g⃗ m, and g’s utility fields 15 ⟩;

This code is used in section 4.

§7 GB SAVE EXTERNAL REPRESENTATION OF GRAPHS 5

7. The util types and id fields are slightly different from other string fields, because we store them directly
in the Graph record instead of storing a pointer. The other fields to be filled by restore graph can all be
done by a macro called fillin , which invokes a subroutine called fill field . The first parameter to fillin is
the address of a field in a record; the second parameter is one of the codes {Z, I, V, S, A}. A global variable
comma expected is nonzero when this field is not the first in its record.

The value returned by fill field is nonzero if something goes wrong.
We assume here that a utility field takes exactly as much space as a field of any of its constituent types.

#define fillin (l, t) if (fill field ((util ∗) &(l), t)) goto sorry

⟨Private functions 7 ⟩ ≡
static long fill field (l, t)

util ∗l; /∗ location of field to be filled in ∗/
char t; /∗ its type code ∗/

{ register char c; /∗ character just read ∗/
if (t ̸= ’Z’ ∧ comma expected) {

if (gb char () ̸= ’,’) return (panic code = syntax error − 1); /∗ missing comma ∗/
if (gb char () ≡ ’\n’) gb newline ();
else gb backup();

}
else comma expected = 1;
c = gb char ();
switch (t) {
case ’I’: ⟨Fill in a numeric field 9 ⟩;
case ’V’: ⟨Fill in a vertex pointer 10 ⟩;
case ’S’: ⟨Fill in a string pointer 12 ⟩;
case ’A’: ⟨Fill in an arc pointer 11 ⟩;
default: gb backup(); break;
}
return panic code ;

}
See also sections 14, 25, 35, 36, 37, and 39.

This code is used in section 2.

8. Some of the communication between restore graph and fillin is best done via global variables.

⟨Private variables 8 ⟩ ≡
static long comma expected ; /∗ should fillin look for a comma? ∗/
static Vertex ∗verts ; /∗ beginning of the block of Vertex records ∗/
static Vertex ∗last vert ; /∗ end of the block of Vertex records ∗/
static Arc ∗arcs ; /∗ beginning of the block of Arc records ∗/
static Arc ∗last arc ; /∗ end of the block of Arc records ∗/

See also sections 13, 19, 22, and 34.

This code is used in section 2.

9. ⟨Fill in a numeric field 9 ⟩ ≡
if (c ≡ ’−’) l⃗ I = −gb number (10);
else {
gb backup();
l⃗ I = gb number (10);

}
break;

This code is used in section 7.

6 EXTERNAL REPRESENTATION OF GRAPHS GB SAVE §10

10. ⟨Fill in a vertex pointer 10 ⟩ ≡
if (c ≡ ’V’) {
l⃗ V = verts + gb number (10);
if (l⃗ V ≥ last vert ∨ l⃗ V < verts) panic code = syntax error − 2; /∗ vertex address too big ∗/

} else if (c ≡ ’0’ ∨ c ≡ ’1’) l⃗ I = c− ’0’;
else panic code = syntax error − 3; /∗ vertex numeric address illegal ∗/
break;

This code is used in section 7.

11. ⟨Fill in an arc pointer 11 ⟩ ≡
if (c ≡ ’A’) {
l⃗ A = arcs + gb number (10);
if (l⃗ A ≥ last arc ∨ l⃗ A < arcs) panic code = syntax error − 4; /∗ arc address too big ∗/

} else if (c ≡ ’0’) l⃗ A = Λ;
else panic code = syntax error − 5; /∗ arc numeric address illegal ∗/
break;

This code is used in section 7.

12. We can restore a string slightly longer than the strings we can save.

⟨Fill in a string pointer 12 ⟩ ≡
if (c ̸= ’"’) panic code = syntax error − 6; /∗ missing quotes at beginning of string ∗/
else { register char ∗p;
p = gb string (item buf , ’"’);
while (∗(p− 2) ≡ ’\n’ ∧ ∗(p− 3) ≡ ’\\’ ∧ p > item buf + 2 ∧ p ≤ buffer) {
gb newline ();
p = gb string (p− 3, ’"’); /∗ splice a broken string together ∗/

}
if (gb char () ̸= ’"’) panic code = syntax error − 7; /∗ missing quotes at end of string ∗/
else if (item buf [0] ≡ ’\0’) l⃗ S = null string ;
else l⃗ S = gb save string (item buf);

}
break;

This code is used in section 7.

13. #define buffer (&item buf [MAX_SV_STRING + 3]) /∗ the last 81 chars of item buf ∗/
⟨Private variables 8 ⟩ +≡
static char item buf [MAX_SV_STRING + 3 + 81]; /∗ an item to be output ∗/

14. When all fields of a record have been filled in, we call finish record and hope that it returns 0.

⟨Private functions 7 ⟩ +≡
static long finish record ()
{
if (gb char () ̸= ’\n’) return (panic code = syntax error − 8); /∗ garbage present ∗/
gb newline ();
comma expected = 0;
return 0;

}

§15 GB SAVE EXTERNAL REPRESENTATION OF GRAPHS 7

15. ⟨Fill in g⃗ n, g⃗ m, and g’s utility fields 15 ⟩ ≡
panic code = 0;
comma expected = 1;
fillin (g⃗ n, ’I’);
fillin (g⃗ m, ’I’);
fillin (g⃗ uu , g⃗ util types [8]);
fillin (g⃗ vv , g⃗ util types [9]);
fillin (g⃗ ww , g⃗ util types [10]);
fillin (g⃗ xx , g⃗ util types [11]);
fillin (g⃗ yy , g⃗ util types [12]);
fillin (g⃗ zz , g⃗ util types [13]);
if (finish record ()) goto sorry ;

This code is used in section 6.

16. The rest is easy.

⟨Fill in the fields of all Vertex records 16 ⟩ ≡
{ register Vertex ∗v;
gb string (str buf , ’\n’);
if (strcmp(str buf , "*␣Vertices") ̸= 0)
panic(syntax error + 3); /∗ introductory line for vertices is missing ∗/

gb newline ();
for (v = verts ; v < last vert ; v++) {
fillin (v⃗ name , ’S’);
fillin (v⃗ arcs , ’A’);
fillin (v⃗ u, g⃗ util types [0]);
fillin (v⃗ v, g⃗ util types [1]);
fillin (v⃗ w, g⃗ util types [2]);
fillin (v⃗ x, g⃗ util types [3]);
fillin (v⃗ y, g⃗ util types [4]);
fillin (v⃗ z, g⃗ util types [5]);
if (finish record ()) goto sorry ;

}
}

This code is used in section 4.

17. ⟨Fill in the fields of all Arc records 17 ⟩ ≡
{ register Arc ∗a;
gb string (str buf , ’\n’);
if (strcmp(str buf , "*␣Arcs") ̸= 0) panic(syntax error + 4);

/∗ introductory line for arcs is missing ∗/
gb newline ();
for (a = arcs ; a < last arc ; a++) {
fillin (a⃗ tip , ’V’);
fillin (a⃗ next , ’A’);
fillin (a⃗ len , ’I’);
fillin (a⃗ a, g⃗ util types [6]);
fillin (a⃗ b, g⃗ util types [7]);
if (finish record ()) goto sorry ;

}
}

This code is used in section 4.

8 EXTERNAL REPRESENTATION OF GRAPHS GB SAVE §18

18. ⟨Check the checksum and close the file 18 ⟩ ≡
{ long s;

gb string (str buf , ’\n’);
if (sscanf (str buf , "*␣Checksum␣%ld",&s) ̸= 1) panic(syntax error + 5);

/∗ checksum line is missing ∗/
if (gb raw close () ̸= s ∧ s ≥ 0) panic(late data fault); /∗ checksum does not match ∗/

}
This code is used in section 4.

§19 GB SAVE SAVING A GRAPH 9

19. Saving a graph. Now that we know how to restore a graph, once it has been saved, we are ready
to write the save graph routine.

Users say save graph (g, "foo.gb"); our job is to create a file "foo.gb" from which the subroutine call
restore graph ("foo.gb") will be able to reconstruct a graph equivalent to g, assuming that g meets the
restrictions stated earlier. If nothing goes wrong, save graph should return the value zero. Otherwise it
should return an encoded trouble report.
We will set things up so that save graph produces a syntactically correct file "foo.gb" in almost every

case, with explicit error indications written at the end of the file whenever certain aspects of the given graph
have had to be changed. The value −1 will be returned if g ≡ Λ; the value −2 will be returned if g ̸= Λ but
the file "foo.gb" could not be opened for output; the value −3 will be returned if memory is exhausted. In
other cases a file "foo.gb" will be created.
Here is a list of things that might go wrong, and the corresponding corrective actions to be taken in each

case, assuming that save graph does create a file:

#define bad type code #1 /∗ illegal character, is changed to ’Z’ ∗/
#define string too long #2 /∗ extralong string, is truncated ∗/
#define addr not in data area #4 /∗ address out of range, is changed to Λ ∗/
#define addr in mixed block #8 /∗ address not in pure block, is Λified ∗/
#define bad string char #10 /∗ illegal string character, is changed to ’?’ ∗/
#define ignored data #20 /∗ nonzero value in ’Z’ format, is not output ∗/
⟨Private variables 8 ⟩ +≡
static long anomalies ; /∗ problems accumulated by save graph ∗/
static FILE ∗save file ; /∗ the file being written ∗/

20. ⟨External functions 4 ⟩ +≡
long save graph (g, f)

Graph ∗g; /∗ graph to be saved ∗/
char ∗f ; /∗ name of the file to be created ∗/

{ ⟨Local variables for save graph 24 ⟩
if (g ≡ Λ ∨ g⃗ vertices ≡ Λ) return −1; /∗ where is g? ∗/
anomalies = 0;
⟨Figure out the extent of g’s internal records 27 ⟩;
save file = fopen (f, "w");
if (¬save file) return −2; /∗ oops, the operating system won’t cooperate ∗/
⟨Translate g into external format 30 ⟩;
⟨Make notes at the end of the file about any changes that were necessary 46 ⟩;
fclose (save file);
gb free (working storage);
return anomalies ;

}

10 SAVING A GRAPH GB SAVE §21

21. The main difficulty faced by save graph is the problem of translating vertex and arc pointers into
symbolic form. A graph’s vertices usually appear in a single block, g⃗ vertices , but its arcs usually appear
in separate blocks that were created whenever the gb new arc routine needed more space. Other blocks,
created by gb save string , are usually also present in the g⃗ data area. We need to classify the various data
blocks. We also want to be able to handle graphs that have been created with homegrown methods of
memory allocation, because GraphBase structures need not conform to the conventions of gb new arc and
gb save string .
A simple data structure based on block rep records will facilitate our task. Each block rep will be set

up to contain the information we need to know about a particular block of data accessible from g⃗ data . Such
blocks are classified into four categories, identified by the cat field in a block rep:

#define unk 0 /∗ cat value for blocks of unknown nature ∗/
#define ark 1 /∗ cat value for blocks assumed to hold Arc records ∗/
#define vrt 2 /∗ cat value for blocks assumed to hold Vertex records ∗/
#define mxt 3 /∗ cat value for blocks being used for more than one purpose ∗/
⟨Type declarations 21 ⟩ ≡
typedef struct {
char ∗start addr ; /∗ starting address of a data block ∗/
char ∗end addr ; /∗ ending address of a data block ∗/
long offset ; /∗ index number of first record in the block, if known ∗/
long cat ; /∗ cat code for the block ∗/
long expl ; /∗ have we finished exploring this block? ∗/

} block rep;

This code is used in section 2.

22. The block rep records don’t need to be linked together in any fancy way, because there usually aren’t
very many of them. We will simply create an array, organized in decreasing order of start addr and end addr ,
with a dummy record standing as a sentinel at the end.
A system-dependent change might be necessary in the following code, if pointer values can be longer than

32 bits, or if comparisons between pointers are undefined.

⟨Private variables 8 ⟩ +≡
static block rep ∗blocks ; /∗ beginning of table of block representatives ∗/
static Area working storage ;

§23 GB SAVE SAVING A GRAPH 11

23. Initially we set the end addr field to the location following a block’s data area. Later we will change
it as explained below.
The code in this section uses the fact that all bits of storage blocks are zero until set nonzero. In particular,

the cat field of each block rep will initially be unk , and the expl will be zero; the start addr and end addr
of the sentinel record will be zero.

⟨ Initialize the blocks array 23 ⟩ ≡
{ Area t; /∗ variable that runs through g⃗ data ∗/
for (∗t = ∗(g⃗ data), block count = 0; ∗t; ∗t = (∗t)⃗ next) block count ++;
blocks = gb typed alloc(block count + 1,block rep,working storage);
if (blocks ≡ Λ) return −3; /∗ out of memory ∗/
for (∗t = ∗(g⃗ data), block count = 0; ∗t; ∗t = (∗t)⃗ next , block count ++) {
cur block = blocks + block count ;
while (cur block > blocks ∧ (cur block − 1)⃗ start addr < (∗t)⃗ first) {

cur block⃗start addr = (cur block − 1)⃗ start addr ;
cur block⃗end addr = (cur block − 1)⃗ end addr ;
cur block −−;

}
cur block⃗start addr = (∗t)⃗ first ;
cur block⃗end addr = (char ∗) ∗t;

}
}

This code is used in section 27.

24. ⟨Local variables for save graph 24 ⟩ ≡
register block rep ∗cur block ; /∗ the current block of interest ∗/
long block count ; /∗ how many blocks have we processed? ∗/

See also section 31.

This code is used in section 20.

12 SAVING A GRAPH GB SAVE §25

25. The save graph routine makes two passes over the graph. The goal of the first pass is reconnaissance:
We try to see where everything is, and we prune off parts that don’t conform to the restrictions. When we
get to the second pass, our task will then be almost trivial. We will be able to march through the known
territory and spew out a copy of what we encounter. (Items that are “pruned” are not actually removed
from g itself, only from the portion of g that is saved.)
The first pass is essentially a sequence of calls of the lookup macro, which looks at one field of one record

and notes whether the existence of this field extends the known boundaries of the graph. The lookup macro
is a shorthand notation for calling the classify subroutine. We make the same assumption about field sizes
as the fill field routine did above.

#define lookup(l, t) classify ((util ∗) &(l), t) /∗ explore field l of type t ∗/
⟨Private functions 7 ⟩ +≡
static void classify (l, t)

util ∗l; /∗ location of field to be classified ∗/
char t; /∗ its type code, from the set {Z, I, V, S, A} ∗/

{ register block rep ∗cur block ;
register char ∗loc ;
register long tcat ; /∗ category corresponding to t ∗/
register long tsize ; /∗ record size corresponding to t ∗/
switch (t) {
default: return;
case ’V’:
if (l⃗ I ≡ 1) return;
tcat = vrt ;
tsize = sizeof (Vertex);
break;

case ’A’: tcat = ark ;
tsize = sizeof (Arc);
break;

}
if (l⃗ I ≡ 0) return;
⟨Classify a pointer variable 26 ⟩;

}

26. Here we know that l points to a Vertex or to an Arc, according as tcat is vrt or ark . We need
to check that this doesn’t violate any assumptions about all such pointers lying in pure blocks within the
g⃗ data area.

⟨Classify a pointer variable 26 ⟩ ≡
loc = (char ∗) l⃗ V ;
for (cur block = blocks ; cur block⃗start addr > loc ; cur block ++) ;
if (loc < cur block⃗end addr) {
if ((loc − cur block⃗start addr) % tsize ̸= 0 ∨ loc + tsize > cur block⃗end addr) cur block⃗cat = mxt ;
if (cur block⃗cat ≡ unk) cur block⃗cat = tcat ;
else if (cur block⃗cat ̸= tcat) cur block⃗cat = mxt ;

}
This code is used in section 25.

§27 GB SAVE SAVING A GRAPH 13

27. We go through the list of blocks repeatedly until we reach a stable situation in which every vrt or ark
block has been explored.

⟨Figure out the extent of g’s internal records 27 ⟩ ≡
{ long activity ;

⟨ Initialize the blocks array 23 ⟩;
lookup(g⃗ vertices , ’V’);
lookup(g⃗ uu , g⃗ util types [8]);
lookup(g⃗ vv , g⃗ util types [9]);
lookup(g⃗ ww , g⃗ util types [10]);
lookup(g⃗ xx , g⃗ util types [11]);
lookup(g⃗ yy , g⃗ util types [12]);
lookup(g⃗ zz , g⃗ util types [13]);
do { activity = 0;

for (cur block = blocks ; cur block⃗end addr ; cur block ++) {
if (cur block⃗cat ≡ vrt ∧ ¬cur block⃗expl) ⟨Explore a block of supposed vertex records 28 ⟩
else if (cur block⃗cat ≡ ark ∧ ¬cur block⃗expl) ⟨Explore a block of supposed arc records 29 ⟩
else continue;
cur block⃗expl = activity = 1;

}
} while (activity);

}
This code is used in section 20.

28. While we are exploring a block, the lookup routine might classify a previously explored block (or even
the current block) as mxt . Therefore some data we assumed would be accessible will actually be removed
from the graph; contradictions that arose might no longer exist. But we plunge ahead anyway, because we
aren’t going to try especially hard to “save” portions of graphs that violate our ground rules.

⟨Explore a block of supposed vertex records 28 ⟩ ≡
{ register Vertex ∗v;
for (v = (Vertex ∗) cur block⃗start addr ;

(char ∗)(v + 1) ≤ cur block⃗end addr ∧ cur block⃗cat ≡ vrt ; v++) {
lookup(v⃗ arcs , ’A’);
lookup(v⃗ u, g⃗ util types [0]);
lookup(v⃗ v, g⃗ util types [1]);
lookup(v⃗ w, g⃗ util types [2]);
lookup(v⃗ x, g⃗ util types [3]);
lookup(v⃗ y, g⃗ util types [4]);
lookup(v⃗ z, g⃗ util types [5]);

}
}

This code is used in section 27.

14 SAVING A GRAPH GB SAVE §29

29. ⟨Explore a block of supposed arc records 29 ⟩ ≡
{ register Arc ∗a;
for (a = (Arc ∗) cur block⃗start addr ;

(char ∗)(a+ 1) ≤ cur block⃗end addr ∧ cur block⃗cat ≡ ark ; a++) {
lookup(a⃗ tip , ’V’);
lookup(a⃗ next , ’A’);
lookup(a⃗ a, g⃗ util types [6]);
lookup(a⃗ b, g⃗ util types [7]);

}
}

This code is used in section 27.

30. OK, the first pass is complete. And the second pass is routine:

⟨Translate g into external format 30 ⟩ ≡
⟨Orient the blocks table for translation 32 ⟩;
⟨ Initialize the output buffer mechanism and output the first line 38 ⟩;
⟨Translate the Graph record 41 ⟩;
⟨Translate the Vertex records 42 ⟩;
⟨Translate the Arc records 44 ⟩;
⟨Output the checksum line 45 ⟩;

This code is used in section 20.

31. During this pass we decrease the end addr field of a block rep, so that it points to the first byte of
the final record in a vrt or ark block.

The variables m and n are set to the number of arc records and vertex records, respectively.

⟨Local variables for save graph 24 ⟩ +≡
long m; /∗ total number of Arc records to be translated ∗/
long n; /∗ total number of Vertex records to be translated ∗/
register long s; /∗ accumulator register for arithmetic calculations ∗/

32. One tricky point needs to be observed, in the unusual case that there are two or more blocks of Vertex
records: The base block g⃗ vertices must come first in the final ordering. (This is the only exception to the
rule thatVertex andArc records each retain their relative order with respect to less-than and greater-than.)

⟨Orient the blocks table for translation 32 ⟩ ≡
m = 0; ⟨Set n to the size of the block that starts with g⃗ vertices 33 ⟩;
for (cur block = blocks + block count − 1; cur block ≥ blocks ; cur block −−) {
if (cur block⃗cat ≡ vrt) {

s = (cur block⃗end addr − cur block⃗start addr)/sizeof (Vertex);
cur block⃗end addr = cur block⃗start addr + ((s− 1) ∗ sizeof (Vertex));
if (cur block⃗start addr ̸= (char ∗) g⃗ vertices) {

cur block⃗offset = n; n += s;
} /∗ otherwise cur block⃗offset remains zero ∗/

} else if (cur block⃗cat ≡ ark) {
s = (cur block⃗end addr − cur block⃗start addr)/sizeof (Arc);
cur block⃗end addr = cur block⃗start addr + ((s− 1) ∗ sizeof (Arc));
cur block⃗offset = m;
m += s;

}
}

This code is used in section 30.

§33 GB SAVE SAVING A GRAPH 15

33. ⟨Set n to the size of the block that starts with g⃗ vertices 33 ⟩ ≡
n = 0;
for (cur block = blocks + block count − 1; cur block ≥ blocks ; cur block −−)
if (cur block⃗start addr ≡ (char ∗) g⃗ vertices) {

n = (cur block⃗end addr − cur block⃗start addr)/sizeof (Vertex);
break;

}
This code is used in section 32.

34. We will store material to be output in the buffer array, so that we can compute the correct checksum.

⟨Private variables 8 ⟩ +≡
static char ∗buf ptr ; /∗ the first unfilled position in buffer ∗/
static long magic ; /∗ the checksum ∗/

35. ⟨Private functions 7 ⟩ +≡
static void flushout () /∗ output the buffer to save file ∗/
{
∗buf ptr ++ = ’\n’;
∗buf ptr = ’\0’;
magic = new checksum (buffer ,magic);
fputs (buffer , save file);
buf ptr = buffer ;

}

36. If a supposed string pointer is zero, we output the null string. (This case arises when a string field has
not been initialized, for example in vertices and arcs that have been allocated but not used.)

⟨Private functions 7 ⟩ +≡
static void prepare string (s)

char ∗s; /∗ string that is moved to item buf ∗/
{ register char ∗p, ∗q;
item buf [0] = ’"’;
p = &item buf [1];
if (s ≡ 0) goto sready ;
for (q = s; ∗q ∧ p ≤ &item buf [MAX_SV_STRING]; q++, p++)
if (∗q ≡ ’"’ ∨ ∗q ≡ ’\n’ ∨ ∗q ≡ ’\\’ ∨ imap ord (∗q) ≡ unexpected char) {

anomalies |= bad string char ;
∗p = ’?’;

} else ∗p = ∗q;
if (∗q) anomalies |= string too long ;

sready : ∗p = ’"’;
∗(p+ 1) = ’\0’;

}

16 SAVING A GRAPH GB SAVE §37

37. The main idea of this part of the program is to format an item into item buf , then move it to buffer ,
making sure that there is always room for a comma.

#define append comma ∗buf ptr ++ = ’,’

⟨Private functions 7 ⟩ +≡
static void move item ()
{ register long l = strlen (item buf);

if (buf ptr + l > &buffer [78]) {
if (l ≤ 78) flushout ();
else { register char ∗p = item buf ;

if (buf ptr > &buffer [77]) flushout (); /∗ no room for initial " ∗/
do {
for (; buf ptr < &buffer [78]; buf ptr ++, p++, l−−) ∗buf ptr = ∗p;
∗buf ptr ++ = ’\\’;
flushout ();

} while (l > 78);
strcpy (buffer , p);
buf ptr = &buffer [l];
return;

}
}
strcpy (buf ptr , item buf);
buf ptr += l;

}

38. ⟨ Initialize the output buffer mechanism and output the first line 38 ⟩ ≡
buf ptr = buffer ;
magic = 0;
fputs ("*␣GraphBase␣graph␣(util_types␣", save file);
{ register char ∗p;
for (p = g⃗ util types ; p < g⃗ util types + 14; p++)
if (∗p ≡ ’Z’ ∨ ∗p ≡ ’I’ ∨ ∗p ≡ ’V’ ∨ ∗p ≡ ’S’ ∨ ∗p ≡ ’A’) fputc(∗p, save file);
else fputc(’Z’, save file);

}
fprintf (save file , ",%ldV,%ldA)\n", n,m);

This code is used in section 30.

§39 GB SAVE SAVING A GRAPH 17

39. A macro called trans , which is sort of an inverse to fillin , takes care of the main work in the second
pass.

#define trans (l, t) translate field ((util ∗) &(l), t)

⟨Private functions 7 ⟩ +≡
static void translate field (l, t)

util ∗l; /∗ address of field to be output in symbolic form ∗/
char t; /∗ type of formatting desired ∗/

{ register block rep ∗cur block ;
register char ∗loc ;
register long tcat ; /∗ category corresponding to t ∗/
register long tsize ; /∗ record size corresponding to t ∗/
if (comma expected) append comma ;
else comma expected = 1;
switch (t) {
default: anomalies |= bad type code ; /∗ fall through to case Z ∗/
case ’Z’: buf ptr −−; /∗ forget spurious comma ∗/

if (l⃗ I) anomalies |= ignored data ;
return;

case ’I’: numeric : sprintf (item buf , "%ld", l⃗ I); goto ready ;
case ’S’: prepare string (l⃗ S); goto ready ;
case ’V’:
if (l⃗ I ≡ 1) goto numeric ;
tcat = vrt ; tsize = sizeof (Vertex); break;

case ’A’: tcat = ark ; tsize = sizeof (Arc); break;
}
⟨Translate a pointer variable 40 ⟩;

ready : move item ();
}

40. ⟨Translate a pointer variable 40 ⟩ ≡
loc = (char ∗) l⃗ V ;
item buf [0] = ’0’; item buf [1] = ’\0’; /∗ Λ will be the default ∗/
if (loc ≡ Λ) goto ready ;
for (cur block = blocks ; cur block⃗start addr > loc ; cur block ++) ;
if (loc > cur block⃗end addr) {
anomalies |= addr not in data area ;
goto ready ;

}
if (cur block⃗cat ̸= tcat ∨ (loc − cur block⃗start addr) % tsize ̸= 0) {
anomalies |= addr in mixed block ;
goto ready ;

}
sprintf (item buf , "%c%ld", t, cur block⃗offset + ((loc − cur block⃗start addr)/tsize));

This code is used in section 39.

18 SAVING A GRAPH GB SAVE §41

41. ⟨Translate the Graph record 41 ⟩ ≡
prepare string (g⃗ id);
if (strlen (g⃗ id) > MAX_SV_ID) {
strcpy (item buf + MAX_SV_ID + 1, "\"");
anomalies |= string too long ;

}
move item ();
comma expected = 1;
trans (g⃗ n, ’I’);
trans (g⃗ m, ’I’);
trans (g⃗ uu , g⃗ util types [8]);
trans (g⃗ vv , g⃗ util types [9]);
trans (g⃗ ww , g⃗ util types [10]);
trans (g⃗ xx , g⃗ util types [11]);
trans (g⃗ yy , g⃗ util types [12]);
trans (g⃗ zz , g⃗ util types [13]);
flushout ();

This code is used in section 30.

42. ⟨Translate the Vertex records 42 ⟩ ≡
{ register Vertex ∗v;
fputs ("*␣Vertices\n", save file);
for (cur block = blocks + block count − 1; cur block ≥ blocks ; cur block −−)
if (cur block⃗cat ≡ vrt ∧ cur block⃗offset ≡ 0) ⟨Translate all Vertex records in cur block 43 ⟩;

for (cur block = blocks + block count − 1; cur block ≥ blocks ; cur block −−)
if (cur block⃗cat ≡ vrt ∧ cur block⃗offset ̸= 0) ⟨Translate all Vertex records in cur block 43 ⟩;

}
This code is used in section 30.

43. ⟨Translate all Vertex records in cur block 43 ⟩ ≡
for (v = (Vertex ∗) cur block⃗start addr ; v ≤ (Vertex ∗) cur block⃗end addr ; v++) {
comma expected = 0;
trans (v⃗ name , ’S’);
trans (v⃗ arcs , ’A’);
trans (v⃗ u, g⃗ util types [0]);
trans (v⃗ v, g⃗ util types [1]);
trans (v⃗ w, g⃗ util types [2]);
trans (v⃗ x, g⃗ util types [3]);
trans (v⃗ y, g⃗ util types [4]);
trans (v⃗ z, g⃗ util types [5]);
flushout ();

}
This code is used in section 42.

§44 GB SAVE SAVING A GRAPH 19

44. ⟨Translate the Arc records 44 ⟩ ≡
{ register Arc ∗a;
fputs ("*␣Arcs\n", save file);
for (cur block = blocks + block count − 1; cur block ≥ blocks ; cur block −−)
if (cur block⃗cat ≡ ark)

for (a = (Arc ∗) cur block⃗start addr ; a ≤ (Arc ∗) cur block⃗end addr ; a++) {
comma expected = 0;
trans (a⃗ tip , ’V’);
trans (a⃗ next , ’A’);
trans (a⃗ len , ’I’);
trans (a⃗ a, g⃗ util types [6]);
trans (a⃗ b, g⃗ util types [7]);
flushout ();

}
}

This code is used in section 30.

45. ⟨Output the checksum line 45 ⟩ ≡
fprintf (save file , "*␣Checksum␣%ld\n",magic);

This code is used in section 30.

46. ⟨Make notes at the end of the file about any changes that were necessary 46 ⟩ ≡
if (anomalies) {
fputs (">␣WARNING:␣I␣had␣trouble␣making␣this␣file␣from␣the␣given␣graph!\n", save file);
if (anomalies & bad type code)
fputs (">>␣The␣original␣util_types␣had␣to␣be␣corrected.\n", save file);

if (anomalies & ignored data)
fputs (">>␣Some␣data␣suppressed␣by␣Z␣format␣was␣actually␣nonzero.\n", save file);

if (anomalies & string too long)
fputs (">>␣At␣least␣one␣long␣string␣had␣to␣be␣truncated.\n", save file);

if (anomalies & bad string char)
fputs (">>␣At␣least␣one␣string␣character␣had␣to␣be␣changed␣to␣’?’.\n", save file);

if (anomalies & addr not in data area)
fputs (">>␣At␣least␣one␣pointer␣led␣out␣of␣the␣data␣area.\n", save file);

if (anomalies & addr in mixed block)
fputs (">>␣At␣least␣one␣data␣block␣had␣an␣illegal␣mixture␣of␣records.\n", save file);

if (anomalies & (addr not in data area + addr in mixed block))
fputs (">>␣␣(Pointers␣to␣improper␣data␣have␣been␣changed␣to␣0.)\n", save file);

fputs (">␣You␣should␣be␣able␣to␣read␣this␣file␣with␣restore_graph,\n", save file);
fputs (">␣but␣the␣graph␣you␣get␣won’t␣be␣exactly␣like␣the␣original.\n", save file);

}
This code is used in section 20.

20 INDEX GB SAVE §47

47. Index. Here is a list that shows where the identifiers of this program are defined and used.

a: 17, 29, 44.
activity : 27.
addr in mixed block : 19, 40, 46.
addr not in data area : 19, 40, 46.
anomalies : 19, 20, 36, 39, 40, 41, 46.
append comma : 37, 39.
Arc: 1, 3, 4, 6, 8, 17, 21, 25, 26, 29, 31, 32, 39, 44.
arcs : 3, 6, 8, 11, 16, 17, 28, 43.
Area: 22, 23.
ark : 21, 25, 26, 27, 29, 31, 32, 39, 44.
aux data : 1.
bad string char : 19, 36, 46.
bad type code : 19, 39, 46.
block count : 23, 24, 32, 33, 42, 44.
block rep: 21, 22, 23, 24, 25, 31, 39.
blocks : 22, 23, 26, 27, 32, 33, 40, 42, 44.
buf ptr : 34, 35, 37, 38, 39.
buffer : 12, 13, 34, 35, 37, 38.
c: 7.
cat : 21, 23, 26, 27, 28, 29, 32, 40, 42, 44.
classify : 25.
comma expected : 7, 8, 14, 15, 39, 41, 43, 44.
cur block : 23, 24, 25, 26, 27, 28, 29, 32, 33,

39, 40, 42, 43, 44.
data : 1, 6, 21, 23, 26.
early data fault : 5.
end addr : 21, 22, 23, 26, 27, 28, 29, 31, 32,

33, 40, 43, 44.
expl : 21, 23, 27.
f : 4, 20.
fclose : 20.
fill field : 7, 25.
fillin : 7, 8, 15, 16, 17, 39.
finish record : 14, 15, 16, 17.
first : 23.
flushout : 35, 37, 41, 43, 44.
fopen : 20.
fprintf : 38, 45.
fputc : 38.
fputs : 35, 38, 42, 44, 46.
g: 4, 20.
gb backup : 7, 9.
gb char : 6, 7, 12, 14.
gb free : 6, 20.
gb new arc : 21.
gb new graph : 6.
gb newline : 6, 7, 12, 14, 16, 17.
gb number : 9, 10, 11.
gb raw close : 4, 18.
gb raw open : 5.
gb recycle : 4.

gb save string : 12, 21.
gb string : 5, 6, 12, 16, 17, 18.
gb trouble code : 6.
gb typed alloc : 6, 23.
Graph: 1, 3, 4, 7, 20.
id : 1, 3, 6, 7, 41.
ID_FIELD_SIZE: 1.
ignored data : 19, 39, 46.
imap ord : 36.
io errors : 5.
item buf : 12, 13, 36, 37, 39, 40, 41.
l: 7, 25, 37, 39.
last arc : 6, 8, 11, 17.
last vert : 6, 8, 10, 16.
late data fault : 18.
len : 3, 17, 44.
loc : 25, 26, 39, 40.
lookup : 25, 27, 28, 29.
m: 4, 31.
magic : 34, 35, 38, 45.
MAX_SV_ID: 1, 41.
MAX_SV_STRING: 1, 13, 36.
move item : 37, 39, 41.
mxt : 21, 26, 28.
n: 4, 31.
name : 1, 3, 16, 43.
new checksum : 35.
next : 3, 17, 23, 29, 44.
no room : 6.
null string : 12.
numeric : 39.
offset : 21, 32, 40, 42.
p: 4, 12, 36, 37, 38.
panic : 5, 6, 16, 17, 18.
panic code : 4, 5, 7, 10, 11, 12, 14, 15.
prepare string : 36, 39, 41.
q: 36.
ready : 39, 40.
restore graph : 1, 3, 4, 7, 8, 19.
s: 18, 31, 36.
save file : 19, 20, 35, 38, 42, 44, 45, 46.
save graph : 1, 3, 4, 19, 20, 21, 25.
sorry : 4, 5, 7, 15, 16, 17.
sprintf : 39, 40.
sready : 36.
sscanf : 5, 18.
start addr : 21, 22, 23, 26, 28, 29, 32, 33, 40, 43, 44.
str buf : 5, 6, 16, 17, 18.
strcmp : 16, 17.
strcpy : 6, 37, 41.
string too long : 19, 36, 41, 46.

§47 GB SAVE INDEX 21

strlen : 5, 37, 41.
syntax error : 5, 6, 7, 10, 11, 12, 14, 16, 17, 18.
system dependencies: 7, 22, 25.
t: 7, 23, 25, 39.
tcat : 25, 26, 39, 40.
tip : 3, 17, 29, 44.
trans : 39, 41, 43, 44.
translate field : 39.
tsize : 25, 26, 39, 40.
unexpected char : 36.
unk : 21, 23, 26.
util: 7, 25, 39.
util types : 1, 3, 6, 7, 15, 16, 17, 27, 28, 29,

38, 41, 43, 44.
uu : 15, 27, 41.
v: 16, 28, 42.
Vertex: 1, 3, 4, 6, 8, 16, 21, 25, 26, 28, 31,

32, 33, 39, 42, 43.
vertices : 3, 6, 20, 21, 27, 32, 33.
verts : 6, 8, 10, 16.
vrt : 21, 25, 26, 27, 28, 31, 32, 39, 42.
vv : 15, 27, 41.
working storage : 20, 22, 23.
ww : 15, 27, 41.
xx : 15, 27, 41.
yy : 3, 15, 27, 41.
zz : 15, 27, 41.

22 NAMES OF THE SECTIONS GB SAVE

⟨Check the checksum and close the file 18 ⟩ Used in section 4.

⟨Classify a pointer variable 26 ⟩ Used in section 25.

⟨Create the Graph record g and fill in its fields 6 ⟩ Used in section 4.

⟨Explore a block of supposed arc records 29 ⟩ Used in section 27.

⟨Explore a block of supposed vertex records 28 ⟩ Used in section 27.

⟨External functions 4, 20 ⟩ Used in section 2.

⟨Figure out the extent of g’s internal records 27 ⟩ Used in section 20.

⟨Fill in a numeric field 9 ⟩ Used in section 7.

⟨Fill in a string pointer 12 ⟩ Used in section 7.

⟨Fill in a vertex pointer 10 ⟩ Used in section 7.

⟨Fill in an arc pointer 11 ⟩ Used in section 7.

⟨Fill in the fields of all Arc records 17 ⟩ Used in section 4.

⟨Fill in the fields of all Vertex records 16 ⟩ Used in section 4.

⟨Fill in g⃗ n, g⃗ m, and g’s utility fields 15 ⟩ Used in section 6.

⟨ Initialize the output buffer mechanism and output the first line 38 ⟩ Used in section 30.

⟨ Initialize the blocks array 23 ⟩ Used in section 27.

⟨Local variables for save graph 24, 31 ⟩ Used in section 20.

⟨Make notes at the end of the file about any changes that were necessary 46 ⟩ Used in section 20.

⟨Open the file and parse the first line; goto sorry if there’s trouble 5 ⟩ Used in section 4.

⟨Orient the blocks table for translation 32 ⟩ Used in section 30.

⟨Output the checksum line 45 ⟩ Used in section 30.

⟨Private functions 7, 14, 25, 35, 36, 37, 39 ⟩ Used in section 2.

⟨Private variables 8, 13, 19, 22, 34 ⟩ Used in section 2.

⟨Set n to the size of the block that starts with g⃗ vertices 33 ⟩ Used in section 32.

⟨Translate a pointer variable 40 ⟩ Used in section 39.

⟨Translate all Vertex records in cur block 43 ⟩ Used in section 42.

⟨Translate the Arc records 44 ⟩ Used in section 30.

⟨Translate the Graph record 41 ⟩ Used in section 30.

⟨Translate the Vertex records 42 ⟩ Used in section 30.

⟨Translate g into external format 30 ⟩ Used in section 20.

⟨Type declarations 21 ⟩ Used in section 2.

⟨ gb_save.h 1 ⟩

May 19, 2018 at 02:29

GB SAVE
Section Page

Introduction . 1 1
External representation of graphs . 3 2
Saving a graph . 19 9
Index . 47 20

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

