
§1 SAT12 INTRO 1

May 19, 2018 at 02:30

1. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.
The other programs in the series solve instances of SAT, but this one is different: It’s a preprocessor, which

inputs a bunch of clauses and tries to simplify them. It uses all sorts of gimmicks that I didn’t want to
bother to include in the other programs. Finally, after reducing the problem until these gimmicks yield no
further progress, it outputs an equivalent set of clauses that can be fed to a real solver.
If you have already read SAT0 (or some other program of this series), you might as well skip now past

all the code for the “I/O wrapper,” because you’ve seen it before—except for the new material in §2 below,
which talks about a special file that makes it possible to undo the effects of preprocessing when constructing
a solution to the original program.
The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals

separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~␣ are ignored (treated as comments).
The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)

2 INTRO SAT12 §2

2. One of the most important jobs of a preprocessor is to reduce the number of variables, if possible. But
when that happens, and if the resulting clauses are satisfiable, the user often wants to know how to satisfy
the original clauses; should the eliminated variables be true or false?
To answer such questions, this program produces an erp file, which reverses the effect of preprocessing.

The erp file consists of zero or more groups of lines, one group for each eliminated variable. The first
line of every group consists of the name of a literal (that is, the name of a variable, optionally preceded
by ~), followed by the three characters ␣<−, followed by a number and end-of-line. That literal represents
an eliminated variable or its negation.
The number after <−, say k, tells how many other lines belong to the same group. Those k lines each

contain a clause in the normal way, where the clauses can involve any variables that haven’t been eliminated.
The meaning is, “If all k of these clauses are satisfied, by the currently known assignment to uneliminated
variables, the literal should be true; otherwise it should be false.”
A companion program, SAT12-ERP, reads an erp file together with the literals output by a SAT-solver,

and assigns values to the eliminated variables by essentially processing the erp file backwards.
For example, SAT12-ERP would process the following simple three-line file

~x <-1

~y z

y <-0

by first setting y true, and then setting x to the complement of the value of z.
(Fine point: A SAT solver might not have actually given a value to z in this example, if the solved clauses

could be satisfied regardless of whether z is true or false. In such cases SAT12-ERP would arbitrarily make
z true and x false.)
Sometimes, as in the case of Rivest’s axioms above, SAT12 will reduce the given clauses to the null set by

eliminating all variables. Then SAT12-ERP will be able to exhibit a solution by examining the erp file alone,
and no solver will be needed.
The erp file will be /tmp/erp unless another name is specified.

§3 SAT12 INTRO 3

3. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
⟨Type definitions 6 ⟩;
⟨Global variables 4 ⟩;
⟨Subroutines 26 ⟩;
main (int argc , char ∗argv [])
{
register uint aa , b, c, cc , h, i, j, k, l, ll , p, pp , q, qq , r, s, t, u, uu , v, vv , w, ww , x;
register uint rbits = 0; /∗ random bits generated but not yet used ∗/
register ullng bits ;
register specialcase ;

⟨Process the command line 5 ⟩;
⟨ Initialize everything 9 ⟩;
⟨ Input the clauses 10 ⟩;
if (verbose & show basics) ⟨Report the successful completion of the input phase 22 ⟩;
⟨Set up the main data structures 40 ⟩;
imems = mems ,mems = 0;
⟨Preprocess until everything is stable 91 ⟩;

finish up : ⟨Output the simplified clauses 97 ⟩;
if (verbose & show basics) {
fprintf (stderr , "Altogether␣"O"llu+"O"llu␣mems,␣"O"llu␣bytes,␣"O"u␣cells;\n",

imems ,mems , bytes , xcells);
if (sub total + str total)
fprintf (stderr , "␣"O"u␣subsumption"O"s,␣"O"u␣strengthening"O"s.\n", sub total ,

sub total ̸= 1 ? "s" : "", str total , str total ̸= 1 ? "s" : "");
fprintf (stderr , "␣false␣hit␣rates␣"O".3f␣of␣"O"llu,␣"O".3f␣of␣"O"llu.\n",

sub tries ? (double) sub false/(double) sub tries : 0.0, sub tries , str tries ? (double)
str false/(double) str tries : 0.0, str tries);

if (elim tries)
fprintf (stderr , "␣"O".3f␣functional␣dependencies␣among␣"O"llu␣trials.\n", (double)

func total /(double) elim tries , elim tries);
fprintf (stderr , "erp␣data␣written␣to␣file␣"O"s.\n", erp file name);

}
}

4 INTRO SAT12 §4

4. #define show basics 1 /∗ verbose code for basic stats ∗/
#define show rounds 2 /∗ verbose code to show each round of elimination ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
#define show resolutions 8 /∗ verbose code for resolution logging ∗/
#define show lit ids 16 /∗ verbose extra help for debugging ∗/
#define show subtrials 32 /∗ verbose code to show subsumption tests ∗/
#define show restrials 64 /∗ verbose code to show resolution tests ∗/
#define show initial clauses 128 /∗ verbose code to show the input clauses ∗/
⟨Global variables 4 ⟩ ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics ; /∗ level of verbosity ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
FILE ∗erp file ; /∗ file to allow reverse preprocessing ∗/
char erp file name [100] = "/tmp/erp"; /∗ its name ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
uint xcells ; /∗ total number of mem cells used ∗/
int cutoff = 10; /∗ heuristic cutoff for variable elimination ∗/
ullng optimism = 25; /∗ don’t try to eliminate if more than this must peter out ∗/
int buckets = 32; /∗ buckets for variable elimination sorting ∗/
ullng mem max = 100000; /∗ lower bound on number of cells allowed in mem ∗/
uint sub total , str total ; /∗ count of subsumptions, strengthenings ∗/
ullng sub tries , sub false , str tries , str false ; /∗ stats on those algorithms ∗/
int maxrounds = #7fffffff; /∗ give up after this many elimination rounds ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
ullng elim tries , func total ; /∗ stats for elimination ∗/

See also sections 8, 39, and 81.

This code is used in section 3.

§5 SAT12 INTRO 5

5. On the command line one can specify nondefault values for any of the following parameters:

• ‘v⟨ integer ⟩’ to enable various levels of verbose output on stderr .
• ‘h⟨positive integer ⟩’ to adjust the hash table size.
• ‘b⟨positive integer ⟩’ to adjust the size of the input buffer.
• ‘s⟨ integer ⟩’ to define the seed for any random numbers that are used.
• ‘e⟨filename ⟩’ to change the name of the erp output file.
• ‘m⟨ integer ⟩’ to specify a minimum mem size (cell memory).
• ‘c⟨ integer ⟩’ to specify a heuristic cutoff for degrees of variables to eliminate.
• ‘C⟨ integer ⟩’ to specify a heuristic cutoff for excess of pq versus p + q when eliminating a variable that
requires pq resolutions.

• ‘B⟨ integer ⟩’ to specify the maximum degree that is distinguished when ranking variables by degree.
• ‘t⟨ integer ⟩’ to specify the maximum number of rounds of variable elimination that will be attempted. (In
particular, ‘t0’ will not eliminate any variables by resolution, although pure literals will go away.)

• ‘T⟨ integer ⟩’ to set timeout : This program will stop preprocessing if it discovers that mems > timeout .

⟨Process the command line 5 ⟩ ≡
for (j = argc − 1, k = 0; j; j−−)
switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&verbose)− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, ""O"d",&hbits)− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, ""O"d",&buf size)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed)− 1); break;
case ’e’: sprintf (erp file name , ""O".99s", argv [j] + 1); break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"llu",&mem max)− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&cutoff)− 1); break;
case ’C’: k |= (sscanf (argv [j] + 1, ""O"llu",&optimism)− 1); break;
case ’B’: k |= (sscanf (argv [j] + 1, ""O"d",&buckets)− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"d",&maxrounds)− 1); break;
case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0) {
fprintf (stderr , "Usage:␣"O"s␣[v<n>]␣[h<n>]␣[b<n>]␣[s<n>]␣[efoo.erp]␣[m<n>]", argv [0]);
fprintf (stderr , "␣[c<n>]␣[C<n>]␣[B<n>]␣[t<n]]␣[T<n>]␣<␣foo.sat\n");
exit (−1);

}
if (¬(erp file = fopen (erp file name , "w"))) {
fprintf (stderr , "I␣couldn’t␣open␣file␣"O"s␣for␣writing!\n", erp file name);
exit (−16);

}
This code is used in section 3.

6 THE I/O WRAPPER SAT12 §6

6. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines into all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.
In these temporary tables, each variable is represented by four things: its unique name; its serial number;

the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/
⟨Type definitions 6 ⟩ ≡

typedef union {
char ch8 [8];
uint u2 [2];
ullng lng ;

} octa;
typedef struct tmp var struct {
octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/

} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk];

} vchunk;

See also sections 7, 25, 27, 28, and 29.

This code is used in section 3.

7. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/
⟨Type definitions 6 ⟩ +≡

typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk];

} chunk;

§8 SAT12 THE I/O WRAPPER 7

8. ⟨Global variables 4 ⟩ +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/

9. ⟨ Initialize everything 9 ⟩ ≡
gb init rand (random seed);
buf = (char ∗) malloc(buf size ∗ sizeof (char));
if (¬buf) {
fprintf (stderr , "Couldn’t␣allocate␣the␣input␣buffer␣(buf_size="O"d)!\n", buf size);
exit (−2);

}
hash = (tmp var ∗∗) malloc(sizeof (tmp var) ≪ hbits);
if (¬hash) {
fprintf (stderr , "Couldn’t␣allocate␣"O"d␣hash␣list␣heads␣(hbits="O"d)!\n", 1 ≪ hbits , hbits);
exit (−3);

}
for (h = 0; h < 1 ≪ hbits ; h++) hash [h] = Λ;

See also section 15.

This code is used in section 3.

8 THE I/O WRAPPER SAT12 §10

10. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)
All the hashing takes place at the very beginning, and the hash tables are actually recycled before any

SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

⟨ Input the clauses 10 ⟩ ≡
while (1) {
if (¬fgets (buf , buf size , stdin)) break;
clauses++;
if (buf [strlen (buf)− 1] ̸= ’\n’) {
fprintf (stderr , "The␣clause␣on␣line␣"O"lld␣("O".20s...)␣is␣too␣long␣for␣me;\n", clauses ,

buf);
fprintf (stderr , "␣my␣buf_size␣is␣only␣"O"d!\n", buf size);
fprintf (stderr , "Please␣use␣the␣command−line␣option␣b<newsize>.\n");
exit (−4);

}
⟨ Input the clause in buf 11 ⟩;

}
if ((vars ≫ hbits) ≥ 10) {
fprintf (stderr , "There␣are␣"O"lld␣variables␣but␣only␣"O"d␣hash␣tables;\n", vars , 1 ≪ hbits);
while ((vars ≫ hbits) ≥ 10) hbits++;
fprintf (stderr , "␣maybe␣you␣should␣use␣command−line␣option␣h"O"d?\n", hbits);

}
clauses −= nullclauses ;
if (clauses ≡ 0) {
fprintf (stderr , "No␣clauses␣were␣input!\n");
exit (−77);

}
if (vars ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣variables!\n", vars);
exit (−664);

}
if (clauses ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣clauses!\n", clauses);
exit (−665);

}
if (cells ≥ #100000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣occurrences␣of␣literals!\n", cells);
exit (−666);

}
This code is used in section 3.

§11 SAT12 THE I/O WRAPPER 9

11. ⟨ Input the clause in buf 11 ⟩ ≡
for (j = k = 0; ;) {
while (buf [j] ≡ ’␣’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’␣’ ∨ buf [j] > ’~’) {

fprintf (stderr , "Illegal␣character␣(code␣#"O"x)␣in␣the␣clause␣on␣line␣"O"lld!\n",
buf [j], clauses);

exit (−5);
}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩;

}
if (k ≡ 0) {
fprintf (stderr , "(Empty␣line␣"O"lld␣is␣being␣ignored)\n", clauses);
nullclauses++; /∗ strictly speaking it would be unsatisfiable ∗/

}
goto clause done ;

empty clause : ⟨Remove all variables of the current clause 19 ⟩;
clause done : cells += k;

This code is used in section 10.

12. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)
⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩ ≡

{
register tmp var ∗p;
if (cur tmp var ≡ bad tmp var) ⟨ Install a new vchunk 13 ⟩;
⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩;
⟨Find cur tmp var⃗name in the hash table at p 17 ⟩;
if (p⃗ stamp ≡ clauses ∨ p⃗ stamp ≡ −clauses) ⟨Handle a duplicate literal 18 ⟩
else {
p⃗ stamp = (i ? −clauses : clauses);
if (cur cell ≡ bad cell) ⟨ Install a new chunk 14 ⟩;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

This code is used in section 11.

10 THE I/O WRAPPER SAT12 §13

13. ⟨ Install a new vchunk 13 ⟩ ≡
{
register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc(sizeof (vchunk));
if (¬new vchunk) {

fprintf (stderr , "Can’t␣allocate␣a␣new␣vchunk!\n");
exit (−6);

}
new vchunk⃗prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk⃗var [0];
bad tmp var = &new vchunk⃗var [vars per vchunk];

}
This code is used in section 12.

14. ⟨ Install a new chunk 14 ⟩ ≡
{
register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc(sizeof (chunk));
if (¬new chunk) {
fprintf (stderr , "Can’t␣allocate␣a␣new␣chunk!\n");
exit (−7);

}
new chunk⃗prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk⃗cell [0];
bad cell = &new chunk⃗cell [cells per chunk];

}
This code is used in section 12.

15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

⟨ Initialize everything 9 ⟩ +≡
for (j = 92; j; j−−)
for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ();

16. ⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩ ≡
cur tmp var⃗name .lng = 0;
for (h = l = 0; buf [j + l] > ’␣’ ∧ buf [j + l] ≤ ’~’; l++) {
if (l > 7) {
fprintf (stderr , "Variable␣name␣"O".9s...␣in␣the␣clause␣on␣line␣"O"lld␣is␣too␣long!\n",

buf + j, clauses);
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var⃗name .ch8 [l] = buf [j + l];

}
if (l ≡ 0) goto empty clause ; /∗ ‘~’ by itself is like ‘true’ ∗/
j += l;
h &= (1 ≪ hbits)− 1;

This code is used in section 12.

§17 SAT12 THE I/O WRAPPER 11

17. ⟨Find cur tmp var⃗name in the hash table at p 17 ⟩ ≡
for (p = hash [h]; p; p = p⃗ next)
if (p⃗ name .lng ≡ cur tmp var⃗name .lng) break;

if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p⃗ next = hash [h], hash [h] = p;
p⃗ serial = vars++;
p⃗ stamp = 0;

}
This code is used in section 12.

18. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

⟨Handle a duplicate literal 18 ⟩ ≡
{
if ((p⃗ stamp > 0) ≡ (i > 0)) goto empty clause ;

}
This code is used in section 12.

19. An input line that begins with ‘~␣’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

⟨Remove all variables of the current clause 19 ⟩ ≡
while (k) {
⟨Move cur cell backward to the previous cell 20 ⟩;
k−−;

}
if ((buf [0] ̸= ’~’) ∨ (buf [1] ̸= ’␣’))
fprintf (stderr , "(The␣clause␣on␣line␣"O"lld␣is␣always␣satisfied)\n", clauses);

nullclauses++;

This code is used in section 11.

20. ⟨Move cur cell backward to the previous cell 20 ⟩ ≡
if (cur cell > &cur chunk⃗cell [0]) cur cell −−;
else {
register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk⃗prev ; free (old chunk);
bad cell = &cur chunk⃗cell [cells per chunk];
cur cell = bad cell − 1;

}
This code is used in sections 19 and 43.

21. ⟨Move cur tmp var backward to the previous temporary variable 21 ⟩ ≡
if (cur tmp var > &cur vchunk⃗var [0]) cur tmp var −−;
else {
register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk⃗prev ; free (old vchunk);
bad tmp var = &cur vchunk⃗var [vars per vchunk];
cur tmp var = bad tmp var − 1;

}
This code is used in section 44.

12 THE I/O WRAPPER SAT12 §22

22. ⟨Report the successful completion of the input phase 22 ⟩ ≡
fprintf (stderr , "("O"lld␣variables,␣"O"lld␣clauses,␣"O"llu␣literals␣successfully␣read)\n",

vars , clauses , cells);

This code is used in section 3.

§23 SAT12 SAT PREPROCESSING 13

23. SAT preprocessing. This program applies transformations that either reduce the number of clauses
or keep that number fixed while reducing the number of variables. In this process we might wind up with no
clauses whatsoever (thus showing that the problem is satisfiable), or we might wind up deducing an empty
clause (thus showing that the problem is unsatisfiable). But since our transformations always go “downhill,”
we can’t solve really tough problems in this way. Our main goal is to make other SAT-solvers more efficient,
by using transformation-oriented data structures that would not be appropriate for them.
Of course we remove all unit clauses, by forcing the associated literal to be true. Every clause that’s

eventually output by this program will have length two or more.
More generally, we remove all clauses that are subsumed by other clauses: If every literal in clause C

appears also in another clause C ′, we remove C ′. In particular, duplicate clauses are discarded.
We also remove “pure literals,” which occur with only one sign. More generally, if variable x occurs

positively a times and negatively b times, we eliminate x by resolution whenever ab ≤ a + b, because
resolution will replace those a+ b clauses by at most ab clauses that contain neither x nor x̄. That happens
whenever (a− 1)(b− 1) ≤ 1, thus not only when a = 0 or b = 0 but also when a = 1 or b = 1 or a = b = 2.
Furthermore, we try resolution even when ab > a + b, because resolution often produces fewer than ab

new clauses (especially when subsumed clauses are removed). We don’t try it, however, when a and b both
exceed a user-specified cutoff parameter.
Another nice case, “strengthening” or “self-subsumption,” arises when clause C almost subsumes another

clause C ′, except that x̄ occurs in C while x occurs in C ′; every other literal of C does appear in C ′. In such
cases we can remove x from C ′, because C ′ \ x = C ⋄ C ′.

24. I haven’t spent much time trying to design data structures that are optimum for the operations needed
by this program; some form of ZDD might well be better for subsumption, depending on the characteristics
of the clauses that are given. But I think the fairly simple structures used here will be adequate.
First, this program keeps all of the clause information in a quadruply linked structure like that of dancing

links: Each cell is in a doubly linked vertical list of all cells for a particular literal, as well as in a doubly
linked horizontal list of all cells for a particular clause.
Second, each clause has a 64-bit “signature” containing 1s for hash codes of its literals. This signature

speeds up subsumption testing.
In some cases there’s a sequential scan through all variables or through all clauses. With fancier data

structures I could add extra techniques to skip more quickly over variables and clauses that have been
eliminated or dormant; but those structures have their own associated costs. As usual, I’ve tried to balance
simplicity and efficiency, using my best guess about how important each operation will be in typical cases.
(For example, I don’t mind making several passes over the data, if each previous pass has brought rich
rewards.)
Two main lists govern the operations of highest priority: The “to-do stack” contains variables whose values

can readily be fixed or ignored; the “strengthened stack” contains clauses that have become shorter. The
program tries to keep the to-do stack empty at most times, because that operation is cheap and productive.
And when the to-do stack is empty, it’s often a good idea to clear off the strengthened stack by seeing if any
of its clauses subsume or strengthen others.
As in other programs of this series, I eschew pointer variables, which are implemented inefficiently by the

programming environment of my 64-bit machine. Instead, links between items of data are indices into arrays
of structured records. The only downside of this policy is that I need to decide in advance how large those
arrays should be.

14 SAT PREPROCESSING SAT12 §25

25. The main mem array contains cell structs, each occupying three octabytes. Every literal of every
clause appears in a cell, with six 32-bit fields to identify the literal and clause together with local left/right
links for that clause and local up/down links for that literal.
The first two cells, mem [0] are mem [1], are reserved for special purposes.
The next cells, mem [2] through mem [2n+1] if there are n variables initially, are heads of the literal lists,

identifiable by their location. Such cells have a 64-bit signature field instead of left/right links; this field
contains the literal’s hash code.
The next cells, mem [2n + 2] through mem [2n + m + 1] if there are m clauses initially, are heads of the

clause lists, identifiable by their location. Such cells have a 64-bit signature field instead of up/down links;
this field is the bitwise OR of the hash codes of the clauses’s literals.

All remaining cells, from mem [2n+m+2] through mem [mem max −1], either contain elements of clauses
or are currently unused.
Because of the overlap between 32-bit and 64-bit fields, a cell struct is defined in terms of the union type

octa. Macros are defined to facilitate references to the individual fields in different contexts.

#define is lit (k) ((k) < lit head top)
#define is cls (k) ((k) < cls head top)
#define up(k) mem [k].litinf .u2 [0] /∗ next “higher” clause of same literal ∗/
#define down (k) mem [k].litinf .u2 [1] /∗ next “lower” clause of same literal ∗/
#define left (k) mem [k].clsinf .u2 [0] /∗ next smaller literal of same clause ∗/
#define right (k) mem [k].clsinf .u2 [1] /∗ next larger literal of same clause ∗/
#define litsig (k) mem [k].clsinf .lng /∗ hash signature of a literal ∗/
#define clssig (k) mem [k].litinf .lng /∗ hash signature of a clause ∗/
#define occurs (l) mem [l].lit /∗ how many clauses contain l? ∗/
#define littime (l) mem [l].cls /∗ what’s their most recent creation time? ∗/
#define size (c) mem [c].cls /∗ how many literals belong to c? ∗/
#define clstime (c) mem [c].lit /∗ most recent full exploitation of c ∗/
⟨Type definitions 6 ⟩ +≡

typedef struct cell struct {
uint lit ; /∗ literal number (except in list heads) ∗/
uint cls ; /∗ clause number (except in list heads) ∗/
octa litinf , clsinf ; /∗ links within literal and clause lists ∗/

} cel; /∗ I’d call this cell except for confusion with cell fields ∗/

26. Here’s a way to display a cell symbolically when debugging with GDB (which doesn’t see those macros):

⟨Subroutines 26 ⟩ ≡
void show cell (uint k)
{
fprintf (stderr , "mem["O"u]=", k);
if (is lit (k)) fprintf (stderr , "occ␣"O"u,␣time␣"O"u,␣sig␣"O"llx,␣up␣"O"u,␣dn␣"O"u\n",

occurs (k), littime (k), litsig (k), up(k), down (k));
else if (is cls (k))
fprintf (stderr , "size␣"O"u,␣time␣"O"u,␣sig␣"O"llx,␣left␣"O"u,␣right␣"O"u\n", size (k),

clstime (k), clssig (k), left (k), right (k));
else fprintf (stderr , "lit␣"O"u,␣cls␣"O"u,␣lft␣"O"u,␣rt␣"O"u,␣up␣"O"u,␣dn␣"O"u\n",

mem [k].lit ,mem [k].cls , left (k), right (k), up(k), down (k));
}

See also sections 30, 31, 32, 33, 37, 38, and 98.

This code is used in section 3.

§27 SAT12 SAT PREPROCESSING 15

27. The vmem array contains global information about individual variables. Variable number k, for
1 ≤ k ≤ n, corresponds to the literals numbered 2k and 2k + 1.
Variables that are on the “to-do stack” of easy pickings (newly discovered unit clauses and pure literals)

have a nonzero status field. The to-do stack begins at to do and ends at 0. The status field is forced true or
forced false if the variable is to be set true or false, respectively; or it is elim quiet if the variable is simply
supposed to be eliminated quietly.
Sometimes a variable is eliminated via resolution, without going onto the to-do stack. In such cases its

status is elim res .
Each variable also has an stable field, which is nonzero if the variable has not been involved in recent

transformations.
We add a 16-bit spare field, and a 32-bit filler field, so that a variable struct fills three octabytes.

#define thevar (l) ((l) ≫ 1)
#define litname (l) (l) & 1 ? "~" : "", vmem [thevar (l)].name .ch8 /∗ used in printouts ∗/
#define pos lit (v) ((v) ≪ 1)
#define neg lit (v) (((v) ≪ 1) + 1)
#define bar (l) ((l)⊕ 1) /∗ the complement of l ∗/
#define touch (w) o, vmem [thevar (w)].stable = 0
#define norm 0
#define elim quiet 1
#define elim res 2
#define forced true 3
#define forced false 4

⟨Type definitions 6 ⟩ +≡
typedef struct var struct {
octa name ; /∗ the variable’s symbolic name ∗/
uint link ; /∗ pointer for the to-do stack ∗/
char status ; /∗ current status ∗/
char stable ; /∗ not recently touched? ∗/
short spare ; /∗ filler ∗/
uint blink ; /∗ link for a bucket list list ∗/
uint filler ; /∗ another filler ∗/

} variable;

28. Three octabytes doesn’t seem quite enough for the data associated with each literal. So here’s another
struct to handle the extra stuff.

⟨Type definitions 6 ⟩ +≡
typedef struct lit struct {
ullng extra ; /∗ useful in the elimination routine ∗/

} literal;

29. Similarly, each clause needs more elbow room.
The stack of strengthened clauses begins at strengthened and ends at sentinel . Clause c is on this list if

and only if slink (c) is nonzero.

#define sentinel 1
#define slink (c) cmem [c− lit head top].link
#define newsize (c) cmem [c− lit head top].size

⟨Type definitions 6 ⟩ +≡
typedef struct cls struct {
uint link ; /∗ next clause in the strengthened list, or zero ∗/
uint size ; /∗ data for clause subsumption/strengthening ∗/

} clause;

16 SAT PREPROCESSING SAT12 §30

30. Here’s a subroutine that prints clause number c.
Note that the number of a clause is its position in mem , which is somewhat erratic. Initially that position

is 2n+1 greater than the clause’s position in the input; for example, if there are 100 variables, the first clause
that was input will be internal clause number 202. As computation proceeds, however, we might decide to
change a clause’s number at any time.

⟨Subroutines 26 ⟩ +≡
void print clause (int c)
{
register uint k, l;

if (is cls (c) ∧ ¬is lit (c)) {
if (¬size (c)) return;
fprintf (stderr , ""O"d:", c); /∗ show the clause number ∗/
for (k = right (c); ¬is cls (k); k = right (k)) {

l = mem [k].lit ;
fprintf (stderr , "␣"O"s"O".8s", litname (l));
if (verbose & show lit ids) fprintf (stderr , "("O"u)", l);

}
fprintf (stderr , "\n");

} else fprintf (stderr , "there␣is␣no␣clause␣"O"d!\n", c);
}

31. Another subroutine shows all the clauses that are currently in memory.

⟨Subroutines 26 ⟩ +≡
void print all (void)
{
register uint c;

for (c = lit head top ; is cls (c); c++)
if (size (c)) print clause (c);

}

32. With a similar subroutine we can print out all of the clauses that involve a particular literal.

⟨Subroutines 26 ⟩ +≡
void print clauses for (int l)
{
register uint k;

if (is lit (l) ∧ l ≥ 2) {
if (vmem [thevar (l)].status) {
fprintf (stderr , "␣"O"s␣has␣been␣%s!\n", vmem [thevar (l)].name .ch8 ,

vmem [thevar (l)].status ≡ elim res ? "eliminated" : vmem [thevar (l)].status ≡ elim quiet ?
"quietly␣eliminated" : vmem [thevar (l)].status ≡ forced true ? "forced␣true" :
vmem [thevar (l)].status ≡ forced false ? "forced␣false" : "clobbered");

return;
}
fprintf (stderr , "␣"O"s"O".8s", litname (l));
if (verbose & show lit ids) fprintf (stderr , "("O"u)", l);
fprintf (stderr , "␣is␣in");
for (k = down (l); ¬is lit (k); k = down (k)) fprintf (stderr , "␣"O"u",mem [k].cls);
fprintf (stderr , "\n");

} else fprintf (stderr , "There␣is␣no␣literal␣"O"d!\n", l);
}

§33 SAT12 SAT PREPROCESSING 17

33. Speaking of debugging, here’s a routine to check if the links in mem have gone awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
⟨Subroutines 26 ⟩ +≡
void sanity (void)
{
register uint l, k, c, countl , countc , counta , s;
register ullng bits ;

for (l = 2, countl = 0; is lit (l); l++)
if (vmem [thevar (l)].status ≡ norm) ⟨Verify the cells for literal l 34 ⟩;

for (c = l, countc = 0; is cls (c); c++)
if (size (c)) ⟨Verify the cells for clause c 35 ⟩;

if (countl ̸= countc ∧ to do ≡ 0)
fprintf (stderr , ""O"u␣cells␣in␣lit␣lists␣but␣"O"u␣cells␣in␣cls␣lists!\n", countl , countc);

⟨Check the avail list 36 ⟩;
if (xcells ̸= cls head top + countc + counta + 1)
fprintf (stderr , "memory␣leak␣of␣"O"d␣cells!\n", (int)(xcells−cls head top−countc−counta−1));

}

34. ⟨Verify the cells for literal l 34 ⟩ ≡
{
for (k = down (l), s = 0; ¬is lit (k); k = down (k)) {
if (k ≥ xcells) {
fprintf (stderr , "address␣in␣lit␣list␣"O"u␣out␣of␣range!\n", l);
goto bad l ;

}
if (mem [k].lit ̸= l)
fprintf (stderr , "literal␣wrong␣at␣cell␣"O"u␣("O"u␣not␣"O"u)!\n", k,mem [k].lit , l);

if (down (up(k)) ̸= k) {
fprintf (stderr , "down/up␣link␣wrong␣at␣cell␣"O"u␣of␣lit␣list␣"O"u!\n", k, l);
goto bad l ;

}
countl ++, s++;

}
if (k ̸= l) fprintf (stderr , "lit␣list␣"O"u␣ends␣at␣"O"u!\n", l, k);
else if (down (up(k)) ̸= k) fprintf (stderr , "down/up␣link␣wrong␣at␣lit␣list␣head␣"O"u!\n", l);
if (s ̸= occurs (l))
fprintf (stderr , "literal␣"O"u␣occurs␣in␣"O"u␣clauses,␣not␣"O"u!\n", l, s, occurs (l));

bad l : continue;
}

This code is used in section 33.

18 SAT PREPROCESSING SAT12 §35

35. The literals of a clause must appear in increasing order.

⟨Verify the cells for clause c 35 ⟩ ≡
{
bits = 0;
for (k = right (c), l = s = 0; ¬is cls (k); k = right (k)) {

if (k ≥ xcells) {
fprintf (stderr , "address␣in␣cls␣list␣"O"u␣out␣of␣range!\n", c);
goto bad c ;

}
if (mem [k].cls ̸= c)
fprintf (stderr , "clause␣wrong␣at␣cell␣"O"u␣("O"u␣not␣"O"u)!\n", k,mem [k].cls , c);

if (right (left (k)) ̸= k) {
fprintf (stderr , "right/left␣link␣wrong␣at␣cell␣"O"u␣of␣cls␣list␣"O"u!\n", k, c);
goto bad c ;

}
if (thevar (mem [k].lit) ≤ thevar (l))
fprintf (stderr , "literals␣"O"u␣and␣"O"u␣out␣of␣order␣in␣cell␣"O"u␣of␣clause␣"O"u!\n",

l,mem [k].lit , k, c);
l = mem [k].lit ;
bits |= litsig (l);
countc++, s++;

}
if (k ̸= c) fprintf (stderr , "cls␣list␣"O"u␣ends␣at␣"O"u!\n", c, k);
else if (right (left (k)) ̸= k)

fprintf (stderr , "right/left␣link␣wrong␣of␣cls␣list␣head␣"O"u!\n", c);
if (bits ̸= clssig (c)) fprintf (stderr , "signature␣wrong␣at␣clause␣"O"u!\n", c);
if (s ̸= size (c)) fprintf (stderr , "clause␣"O"u␣has␣"O"u␣literals,␣not␣"O"u!\n", c, s, size (c));

bad c : continue;
}

This code is used in section 33.

36. Unused cells of mem either lie above xcells or appear in the avail stack. Entries of the latter list are
linked together by left links, terminated by 0; their other fields are undefined.

⟨Check the avail list 36 ⟩ ≡
for (k = avail , counta = 0; k; k = left (k)) {
if (k ≥ xcells ∨ is cls (k)) {
fprintf (stderr , "address␣out␣of␣range␣in␣avail␣stack!\n");
break;

}
counta++;

}
This code is used in section 33.

§37 SAT12 SAT PREPROCESSING 19

37. Of course we need the usual memory allocation routine, to deliver a fresh cell when needed.
(The author fondly recalls the day in autumn, 1960, when he first learned about linked lists and the

associated avail stack, while reading the program for the BALGOL compiler on the Burroughs 220 computer.)

⟨Subroutines 26 ⟩ +≡
uint get cell (void)
{
register uint k;

if (avail) {
k = avail ;
o, avail = left (k);
return k;

}
if (xcells ≡ mem max) {
fprintf (stderr , "Oops,␣we’re␣out␣of␣memory␣(mem_max="O"llu)!\nTry␣option␣m.\n",

mem max);
exit (−9);

}
return xcells++;

}

38. Conversely, we need quick ways to recycle cells that have done their duty.

⟨Subroutines 26 ⟩ +≡
void free cell (uint k)
{
o, left (k) = avail ; /∗ the free cell routine shouldn’t change anything else in mem [k] ∗/
avail = k;

}
void free cells (uint k,uint kk)
{ /∗ k = kk or left (kk) or left (left (kk)), etc. ∗/
o, left (k) = avail ;
avail = kk ;

}

39. ⟨Global variables 4 ⟩ +≡
cel ∗mem ; /∗ the master array of cells ∗/
uint lit head top ; /∗ first cell not in a literal list head ∗/
uint cls head top ; /∗ first cell not in a clause list head ∗/
uint avail ; /∗ top of the stack of available cells ∗/
uint to do ; /∗ top of the to-do stack ∗/
uint strengthened ; /∗ top of the strengthened stack ∗/
variable ∗vmem ; /∗ auxiliary data for variables ∗/
literal ∗lmem ; /∗ auxiliary data for literals ∗/
clause ∗cmem ; /∗ auxiliary data for clauses ∗/
int vars gone ; /∗ we’ve eliminated this many variables so far ∗/
int clauses gone ; /∗ we’ve eliminated this many clauses so far ∗/
uint time ; /∗ the number of rounds of variable elimination we’ve done ∗/

20 INITIALIZING THE REAL DATA STRUCTURES SAT12 §40

40. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks. The code below is, of course, hacked from what has
worked in previous programs of this series.

⟨Set up the main data structures 40 ⟩ ≡
⟨Allocate the main arrays 41 ⟩;
⟨Copy all the temporary cells to the mem array in proper format 42 ⟩;
⟨Copy all the temporary variable nodes to the vmem array in proper format 44 ⟩;
⟨Check consistency 45 ⟩;
⟨Finish building the cell data structures 46 ⟩;
⟨Allocate the subsidiary arrays 52 ⟩;

This code is used in section 3.

41. There seems to be no good way to predict how many cells we’ll need, because the size of clauses can
grow exponentially as the number of clauses shrinks. Here we allow for twice the number of cells in the
input, or the user-supplied value of mem max , whichever is larger—provided that we don’t exceed 32-bit
addresses.

⟨Allocate the main arrays 41 ⟩ ≡
free (buf); free (hash); /∗ a tiny gesture to make a little room ∗/
lit head top = vars + vars + 2;
cls head top = lit head top + clauses ;
xcells = cls head top + cells + 1;
if (xcells + cells > mem max) mem max = xcells + cells ;
if (mem max ≥ #100000000) mem max = #ffffffff;
mem = (cel ∗) malloc(mem max ∗ sizeof (cel));
if (¬mem) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣big␣mem␣array!\n");
exit (−10);

}
bytes = mem max ∗ sizeof (cel);
vmem = (variable ∗) malloc((vars + 1) ∗ sizeof (variable));
if (¬vmem) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣vmem␣array!\n");
exit (−11);

}
bytes += (vars + 1) ∗ sizeof (variable);

This code is used in section 40.

42. ⟨Copy all the temporary cells to the mem array in proper format 42 ⟩ ≡
for (l = 2; is lit (l); l++) o, down (l) = l;
for (c = clauses , j = cls head top ; c; c−−) {
⟨ Insert the cells for the literals of clause c 43 ⟩;

}
if (j ̸= cls head top + cells) {
fprintf (stderr , "Oh␣oh,␣something␣happened␣to␣"O"d␣cells!\n", (int)(cls head top + cells − j));
exit (−15);

}
This code is used in section 40.

§43 SAT12 INITIALIZING THE REAL DATA STRUCTURES 21

43. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

⟨ Insert the cells for the literals of clause c 43 ⟩ ≡
for (i = 0; i < 2;) {
⟨Move cur cell backward to the previous cell 20 ⟩;
i = hack out (∗cur cell);
p = hack clean (∗cur cell)⃗ serial ;
p += p+ (i& 1) + 2;
o,mem [j].lit = p,mem [j].cls = cc = c+ lit head top − 1;
ooo , down (j) = down (p), down (p) = j++;

}
o, left (cc) = cc ;

This code is used in section 42.

44. ⟨Copy all the temporary variable nodes to the vmem array in proper format 44 ⟩ ≡
for (c = vars ; c; c−−) {
⟨Move cur tmp var backward to the previous temporary variable 21 ⟩;
o, vmem [c].name .lng = cur tmp var⃗name .lng ;
o, vmem [c].stable = vmem [c].status = 0;

}
This code is used in section 40.

45. We should now have unwound all the temporary data chunks back to their beginnings.

⟨Check consistency 45 ⟩ ≡
if (cur cell ̸= &cur chunk⃗cell [0] ∨ cur chunk⃗prev ̸= Λ ∨ cur tmp var ̸=

&cur vchunk⃗var [0] ∨ cur vchunk⃗prev ̸= Λ) confusion ("consistency");
free (cur chunk); free (cur vchunk);

This code is used in section 40.

46. ⟨Finish building the cell data structures 46 ⟩ ≡
for (l = 2; is lit (l); l++) ⟨Set the up links for l and the left links of its cells 47 ⟩;
for (c = l; is cls (c); c++) ⟨Set the right links for c, and its signature and size 49 ⟩;

This code is used in section 40.

22 INITIALIZING THE REAL DATA STRUCTURES SAT12 §47

47. Since we process the literal lists in order, each clause is automatically sorted, with its literals appearing
in increasing order from left to right. (That fact will help us significantly when we test for subsumption or
compute resolvents.)
The clauses of a literal ’s list are initially in order too. But we don’t attempt to preserve that. Clauses will

soon get jumbled.

⟨Set the up links for l and the left links of its cells 47 ⟩ ≡
{
for (j = l, k = down (j), s = 0; ¬is lit (k); o, j = k, k = down (j)) {

o, up(k) = j;
o, c = mem [k].cls ;
ooo , left (k) = left (c), left (c) = k;
s++;

}
if (k ̸= l) confusion ("lit␣init");
o, occurs (l) = s, littime (l) = 0;
o, up(l) = j;
if (s ≡ 0) {
w = l;
if (verbose & show details)

fprintf (stderr , "no␣input␣clause␣contains␣the␣literal␣"O"s"O".8s\n", litname (w));
⟨Set literal w to false unless it’s already set 51 ⟩;

} else ⟨Set litsig (l) 48 ⟩;
}

This code is used in section 46.

48. I’m using two hash bits here, because experiments showed that this policy was almost always better
than to use a single hash bit.

As in other programs of this series, I assume that it costs four mems to generate 31 new random bits.

⟨Set litsig (l) 48 ⟩ ≡
{
if (rbits < #40) mems += 4, rbits = gb next rand () | (1U ≪ 30);
o, litsig (l) = 1LLU ≪ (rbits & #3f);
rbits ≫= 6;
if (rbits < #40) mems += 4, rbits = gb next rand () | (1U ≪ 30);
o, litsig (l) |= 1LLU ≪ (rbits & #3f);
rbits ≫= 6;

}
This code is used in section 47.

§49 SAT12 INITIALIZING THE REAL DATA STRUCTURES 23

49. ⟨Set the right links for c, and its signature and size 49 ⟩ ≡
{
bits = 0;
for (j = c, k = left (j), s = 0; ¬is cls (k); o, j = k, k = left (k)) {

o, right (k) = j;
o, w = mem [k].lit ;
o, bits |= litsig (w);
s++;

}
if (k ̸= c) confusion ("cls␣init");
o, size (c) = s, clstime (c) = 0;
oo , clssig (c) = bits , right (c) = j;
if (s ≤ 1) {
if (s ≡ 0) confusion ("empty␣clause");
if (verbose & show details)
fprintf (stderr , "clause␣"O"u␣is␣the␣single␣literal␣"O"s"O".8s\n", c, litname (w));

⟨Force literal w to be true 50 ⟩;
}

}
This code is used in section 46.

50. Here we assume that thevar (w) hasn’t already been eliminated. A unit clause has arisen, with w as
its only literal.
A variable might be touched after it has been put into the to-do stack. Thus we can’t call it stable yet,

even though its value won’t change.

⟨Force literal w to be true 50 ⟩ ≡
{
register int k = thevar (w);

if (w & 1) {
if (o, vmem [k].status ≡ norm) {
o, vmem [k].status = forced false ;
vmem [k].link = to do , to do = k;

} else if (vmem [k].status ≡ forced true) goto unsat ;
} else {
if (o, vmem [k].status ≡ norm) {
o, vmem [k].status = forced true ;
vmem [k].link = to do , to do = k;

} else if (vmem [k].status ≡ forced false) goto unsat ;
}

}
This code is used in sections 49, 54, 64, and 90.

24 INITIALIZING THE REAL DATA STRUCTURES SAT12 §51

51. The logic in this step is similar to the previous one, except that we aren’t forcing a value: Either w
wasn’t present in any of the original clauses, or its final occurrence has disappeared.
It’s possible that all occurrences of w̄ have already disappeared too. In that case (which arises if and only

if thevar (w) is already on the to-do list at this point, and its status indicates that w has been forced true),
we just change the status to elim quiet , because the variable needn’t be set either true or false.

⟨Set literal w to false unless it’s already set 51 ⟩ ≡
{
register int k = thevar (w);

if (o, vmem [k].status ≡ norm) {
o, vmem [k].status = (w & 1 ? forced true : forced false);
vmem [k].link = to do , to do = k;

} else if (vmem [k].status ≡ (w & 1 ? forced false : forced true))
o, vmem [k].status = elim quiet , vmem [k].stable = 1;

}
This code is used in sections 47, 56, 60, 63, and 88.

52. ⟨Allocate the subsidiary arrays 52 ⟩ ≡
lmem = (literal ∗) malloc(lit head top ∗ sizeof (literal));
if (¬lmem) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣lmem␣array!\n");
exit (−12);

}
bytes += lit head top ∗ sizeof (literal);
for (l = 0; l < lit head top ; l++) o, lmem [l].extra = 0;
cmem = (clause ∗) malloc(clauses ∗ sizeof (clause));
if (¬cmem) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cmem␣array!\n");
exit (−13);

}
bytes += clauses ∗ sizeof (clause);

See also section 82.

This code is used in section 40.

§53 SAT12 CLEARING THE TO-DO STACK 25

53. Clearing the to-do stack. To warm up, let’s take care of the most basic operation, which simply
assigns a forced value to a variable and propagates all the consequences until nothing more is obviously
forced.

⟨Clear the to-do stack 53 ⟩ ≡
while (to do) {
register uint c;

k = to do ;
o, to do = vmem [k].link ;
if (vmem [k].status ̸= elim quiet) {

l = vmem [k].status ≡ forced true ? pos lit (k) : neg lit (k);
fprintf (erp file , ""O"s"O".8s␣<−0\n", litname (l));
o, vmem [k].stable = 1;
⟨Delete all clauses that contain l 56 ⟩;
⟨Delete bar (l) from all clauses 54 ⟩;

}
vars gone++;
if (sanity checking) sanity ();

}
if (mems > timeout) {
if (verbose & show basics) fprintf (stderr , "Timeout!\n");
goto finish up ; /∗ stick with the simplifications we’ve got so far ∗/

}
This code is used in section 65.

54. ⟨Delete bar (l) from all clauses 54 ⟩ ≡
for (o, ll = down (bar (l)); ¬is lit (ll); o, ll = down (ll)) {
o, c = mem [ll].cls ;
o, p = left (ll), q = right (ll);
oo , right (p) = q, left (q) = p;
free cell (ll); /∗ down (ll) unchanged ∗/
o, j = size (c)− 1;
o, size (c) = j;
if (j ≡ 1) {

o, w = (p ≡ c ? mem [q].lit : mem [p].lit);
if (verbose & show details)

fprintf (stderr , "clause␣"O"u␣reduces␣to␣"O"s"O".8s\n", c, litname (w));
⟨Force literal w to be true 50 ⟩;

}
⟨Recompute clssig (c) 55 ⟩;
if (o, slink (c) ≡ 0) o, slink (c) = strengthened , strengthened = c;

}
This code is used in section 53.

55. ⟨Recompute clssig (c) 55 ⟩ ≡
{
register ullng bits = 0;
register uint t;

for (o, t = right (c); ¬is cls (t); o, t = right (t)) oo , bits |= litsig (mem [t].lit);
o, clssig (c) = bits ;

}
This code is used in section 54.

26 CLEARING THE TO-DO STACK SAT12 §56

56. ⟨Delete all clauses that contain l 56 ⟩ ≡
for (o, ll = down (l); ¬is lit (ll); o, ll = down (ll)) {
o, c = mem [ll].cls ;
if (verbose & show details)

fprintf (stderr , "clause␣"O"u␣is␣satisfied␣by␣"O"s"O".8s\n", c, litname (l));
for (o, p = right (c); ¬is cls (p); o, p = right (p))
if (p ̸= ll) {
o, w = mem [p].lit ;
o, q = up(p), r = down (p);
oo , down (q) = r, up(r) = q;
touch (w);
oo , occurs (w)−−;
if (occurs (w) ≡ 0) {
if (verbose & show details)

fprintf (stderr , "literal␣"O"s"O".8s␣no␣longer␣appears\n", litname (w));
⟨Set literal w to false unless it’s already set 51 ⟩;

}
}

free cells (right (c), left (c));
o, size (c) = 0, clauses gone++;

}
This code is used in section 53.

§57 SAT12 SUBSUMPTION TESTING 27

57. Subsumption testing. Our data structures make it fairly easy to find (and remove) all clauses that
are subsumed by a given clause C, using an algorithm proposed by Armin Biere [Lecture Notes in Computer
Science 3542 (2005), 59–70]: We choose a literal l ∈ C, then run through all clauses C ′ that contain l. Most
of the cases in which C is not a subset of C ′ can be ruled out quickly by looking at the sizes and signatures
of C and C ′.
It would be nice to be able to go the other way, namely to start with a clause C ′ and to determine whether

or not it is subsumed by some C. That seems unfeasible; but there is a special case in which we do have
some hope: When we resolve the clause C0 = x ∨ α with the clause C1 = x̄ ∨ β, to get C ′ = α ∨ β, we
can assume that any clause C contained in C ′ contains an element of α \ β as well as an element of β \ α;
otherwise C would subsume C0 or C1. Thus if α\β and/or β \α consists of a single element l, we can search
through all clauses C that contain l, essentially as above but with roles reversed.
(I wrote that last paragraph just in case it might come in useful some day; so far, this program only

implements the idea in the first paragraph.)

⟨Remove clauses subsumed by c 57 ⟩ ≡
if (verbose & show subtrials) fprintf (stderr , "␣trying␣subsumption␣by␣"O"u\n", c);
⟨Choose a literal l ∈ c on which to branch 58 ⟩;
ooo , s = size (c), bits = clssig (c), v = left (c);
for (o, pp = down (l); ¬is lit (pp); o, pp = down (pp)) {
o, cc = mem [pp].cls ;
if (cc ≡ c) continue;
sub tries++;
if (o, bits &∼clssig (cc)) continue;
if (o, size (cc) < s) continue;
⟨ If c is contained in cc , make l ≤ ll 59 ⟩;
if (l > ll) sub false++;
else ⟨Remove the subsumed clause cc 60 ⟩;

}
This code is used in sections 65 and 93.

58. Naturally we seek a literal that appears in the fewest clauses.

⟨Choose a literal l ∈ c on which to branch 58 ⟩ ≡
ooo , p = right (c), l = mem [p].lit , k = occurs (l);
for (o, p = right (p); ¬is cls (p); o, p = right (p)) {
o, ll = mem [p].lit ;
if (o, occurs (ll) < k) k = occurs (ll), l = ll ;

}
This code is used in section 57.

28 SUBSUMPTION TESTING SAT12 §59

59. The algorithm here actually ends up with either l < ll or l > ll in all cases.

⟨ If c is contained in cc , make l ≤ ll 59 ⟩ ≡
o, q = v, qq = left (cc);
while (1) {
oo , l = mem [q].lit , ll = mem [qq].lit ;
while (l < ll) {
o, qq = left (qq);
if (is cls (qq)) ll = 0;
else o, ll = mem [qq].lit ;

}
if (l > ll) break;
o, q = left (q);
if (is cls (q)) {

l = 0; break;
}
o, qq = left (qq);
if (is cls (qq)) {
ll = 0; break;

}
}

This code is used in section 57.

60. ⟨Remove the subsumed clause cc 60 ⟩ ≡
{
if (verbose & show details) fprintf (stderr , "clause␣"O"u␣subsumes␣clause␣"O"u\n", c, cc);
sub total ++;
for (o, p = right (cc); ¬is cls (p); o, p = right (p)) {

o, q = up(p), r = down (p);
oo , down (q) = r, up(r) = q;
o, w = mem [p].lit ;
touch (w);
oo , occurs (w)−−;
if (occurs (w) ≡ 0) {
if (verbose & show details)
fprintf (stderr , "literal␣"O"s"O".8s␣no␣longer␣appears\n", litname (q));

⟨Set literal w to false unless it’s already set 51 ⟩;
}

}
free cells (right (cc), left (cc));
o, size (cc) = 0, clauses gone++;

}
This code is used in section 57.

§61 SAT12 STRENGTHENING 29

61. Strengthening. A similar algorithm can be used to find clauses C ′ that, when resolved with a given
clause C, become stronger (shorter). This happens when C contains a literal l such that C would subsume C ′

if l were changed to l̄ in C; then we can remove l̄ from C ′. [See Niklas Eén and Armin Biere, Lecture Notes
in Computer Science 3569 (2005), 61–75.]
Thus I repeat the previous code, with the necessary changes for this modification. The literal called l

above is called u in this program.

⟨Strengthen clauses that c can improve 61 ⟩ ≡
{
ooo , s = size (c), bits = clssig (c), v = left (c);
for (o, vv = v; ¬is cls (vv); o, vv = left (vv)) {
register ullng ubits ;

o, u = mem [vv].lit ;
if (specialcase) ⟨Reject u unless it fills special conditions 95 ⟩;
if (verbose & show subtrials)

fprintf (stderr , "␣trying␣to␣strengthen␣by␣"O"u␣and␣"O"s"O".8s\n", c, litname (u));
o, ubits = bits &∼litsig (u);
for (o, pp = down (bar (u)); ¬is lit (pp); o, pp = down (pp)) {
str tries++;
o, cc = mem [pp].cls ;
if (o, ubits &∼clssig (cc)) continue;
if (o, size (cc) < s) continue;
⟨ If c is contained in cc , except for u, make l ≤ ll 62 ⟩;
if (l > ll) str false++;
else ⟨Remove bar (u) from cc 63 ⟩;

}
}

}
This code is used in sections 65 and 94.

62. ⟨ If c is contained in cc , except for u, make l ≤ ll 62 ⟩ ≡
o, q = v, qq = left (cc);
while (1) {
oo , l = mem [q].lit , ll = mem [qq].lit ;
if (l ≡ u) l = bar (l);
while (l < ll) {
o, qq = left (qq);
if (is cls (qq)) ll = 0;
else o, ll = mem [qq].lit ;

}
if (l > ll) break;
o, q = left (q);
if (is cls (q)) {

l = 0; break;
}
o, qq = left (qq);
if (is cls (qq)) {
ll = 0; break;

}
}

This code is used in section 61.

30 STRENGTHENING SAT12 §63

63. ⟨Remove bar (u) from cc 63 ⟩ ≡
{
register ullng ccbits = 0;

if (verbose & show details) fprintf (stderr ,
"clause␣"O"u␣loses␣literal␣"O"s"O".8s␣via␣clause␣"O"u\n", cc , litname (bar (u)), c);

str total ++;
for (o, p = right (cc); ; o, p = right (p)) {
o, w = mem [p].lit ;
touch (w);
if (w ≡ bar (u)) break;
o, ccbits |= litsig (w);

}
oo , occurs (w)−−;
if (occurs (w) ≡ 0) {
if (verbose & show details)

fprintf (stderr , "literal␣"O"s"O".8s␣no␣longer␣appears\n", litname (w));
⟨Set literal w to false unless it’s already set 51 ⟩;

}
o, q = up(p), w = down (p);
oo , down (q) = w, up(w) = q;
o, q = right (p), w = left (p);
oo , left (q) = w, right (w) = q;
free cell (p);
for (p = q; ¬is cls (p); o, p = right (p)) {

o, q = mem [p].lit ;
touch (q);
o, ccbits |= litsig (q);

}
o, clssig (cc) = ccbits ;
⟨Decrease size (cc) 64 ⟩;
if (o, slink (cc) ≡ 0) o, slink (cc) = strengthened , strengthened = cc ;

}
This code is used in section 61.

64. Clause cc shouldn’t become empty at this point. For that could happen only if clause c had been a
unit clause. (We don’t use unit clauses for strengthening in such a baroque way; we handle them with the
much simpler to-do list mechanism.)

⟨Decrease size (cc) 64 ⟩ ≡
oo , size (cc)−−;
if (size (cc) ≤ 1) {
if (size (cc) ≡ 0) confusion ("strengthening");
oo , w = mem [right (cc)].lit ;
if (verbose & show details)

fprintf (stderr , "clause␣"O"u␣reduces␣to␣"O"s"O".8s\n", cc , litname (w));
⟨Force literal w to be true 50 ⟩;

}
This code is used in section 63.

§65 SAT12 CLEARING THE STRENGTHENED STACK 31

65. Clearing the strengthened stack. Whenever a clause gets shorter, it has new opportunities to
subsume and/or strengthen other clauses. So we eagerly exploit all such opportunities.

⟨Clear the strengthened stack 65 ⟩ ≡
{
register uint c;

⟨Clear the to-do stack 53 ⟩;
while (strengthened ̸= sentinel) {
c = strengthened ;
o, strengthened = slink (c);
if (o, size (c)) {
o, slink (c) = 0;
⟨Remove clauses subsumed by c 57 ⟩;
⟨Clear the to-do stack 53 ⟩;
if (o, size (c)) {
specialcase = 0;
⟨Strengthen clauses that c can improve 61 ⟩;
⟨Clear the to-do stack 53 ⟩;
o, clstime (c) = time ;
o,newsize (c) = 0;

}
}

}
}

This code is used in sections 83, 91, 93, and 94.

32 VARIABLE ELIMINATION SAT12 §66

66. Variable elimination. The satisfiability problem is essentially the evaluation of the predicate
∃x∃y f(x, y), where x is a variable and y is a vector of other variables. Furthermore f is expressed in
conjunctive normal form (CNF); so we can write f(x, y) =

(
x ∨ α(y)

)
∧
(
x̄ ∨ β(y)

)
∧ γ(y), where α, β,

and γ are also in CNF. Since ∃x f(x, y) = f(0, y) ∨ f(1, y), we can eliminate x and get the x-free problem
∃y

(
α(y) ∨ γ(y)

)
∧
(
β(y) ∨ γ(y)

)
= ∃y

(
α(y) ∨ β(y)

)
∧ γ(y).

Computationally this means that we can replace all of the clauses that contain x or x̄ by the clauses of
α(y) ∨ β(y). And if α(y) = α1 ∧ · · · ∧ αa and β(y) = β1 ∧ · · · ∧ βb, those clauses are the so-called resolvents
(x ∨ αi) ⋄ (x̄ ∨ βj) = αi ∨ βj , for 1 ≤ i ≤ a and 1 ≤ j ≤ b.

Codewise, we want to compute the resolvent of c with cc , given clauses c and cc , assuming that l and
ll = bar (l) are respectively contained in c and cc .

The effect of the computation in this step will be to set p = 0 if the resolvent is a tautology (containing
both y and ȳ for some y). Otherwise the cells of the resolvent will be p, . . . , left (left (1)), left (1). These
cells will be linked together tentatively via their left links, thus not yet incorporated into the main data
structures.

⟨Resolve c and cc with respect to l 66 ⟩ ≡
p = 1;
oo , v = left (c), u = mem [v].lit ;
oo , vv = left (cc), uu = mem [vv].lit ;
while (u+ uu) {
if (u ≡ uu) ⟨Copy u and move both v and vv left 72 ⟩
else if (u ≡ bar (uu)) {

if (u ≡ l) ⟨Move both v and vv left 69 ⟩
else ⟨Return a tautology 73 ⟩;

} else if (u > uu) ⟨Copy u and move v left 70 ⟩
else ⟨Copy uu and move vv left 71 ⟩;

}
This code is used in section 78.

67. ⟨Move v left 67 ⟩ ≡
{
o, v = left (v);
if (is cls (v)) u = 0;
else o, u = mem [v].lit ;

}
This code is used in sections 69 and 70.

68. ⟨Move vv left 68 ⟩ ≡
{
o, vv = left (vv);
if (is cls (vv)) uu = 0;
else o, uu = mem [vv].lit ;

}
This code is used in sections 69 and 71.

69. ⟨Move both v and vv left 69 ⟩ ≡
{
⟨Move v left 67 ⟩;
⟨Move vv left 68 ⟩;

}
This code is used in sections 66 and 72.

§70 SAT12 VARIABLE ELIMINATION 33

70. ⟨Copy u and move v left 70 ⟩ ≡
{
q = p, p = get cell ();
oo , left (q) = p,mem [p].lit = u;
⟨Move v left 67 ⟩;

}
This code is used in section 66.

71. ⟨Copy uu and move vv left 71 ⟩ ≡
{
q = p, p = get cell ();
oo , left (q) = p,mem [p].lit = uu ;
⟨Move vv left 68 ⟩;

}
This code is used in section 66.

72. ⟨Copy u and move both v and vv left 72 ⟩ ≡
{
q = p, p = get cell ();
oo , left (q) = p,mem [p].lit = u;
⟨Move both v and vv left 69 ⟩;

}
This code is used in section 66.

73. ⟨Return a tautology 73 ⟩ ≡
{
if (p ̸= 1) o, free cells (p, left (1));
p = 0;
break;

}
This code is used in section 66.

34 VARIABLE ELIMINATION SAT12 §74

74. Eén and Biere, in their paper about preprocessing cited above, noticed that important simplifications
are possible when x is fully determined by other variables.
Formally we can try to partition the clauses α = α(0) ∨ α(1) and β = β(0) ∨ β(1) in such a way that

(α(0)∧β(0))∨(α(1)∧β(1)) ≤ (α(0)∧β(1))∨(α(1)∧β(0)); then we need not compute the resolvents (α(0)∧β(0))
or (α(1)∧β(1)), because the resolvents of “oppositely colored” α’s and β’s imply all of the “same colored” ones.
A necessary and sufficient condition for this to be possible is that the conditions α(0) = β(0) ̸= α(1) = β(1)

are not simultaneously satisfiable.
For example, the desired condition holds if we can find a partition of the clauses such that α(0) = ¬β(0),

because the clauses
(
x ∨ ¬β(0)

)
∧
(
x̄ ∨ β(0)

)
imply that x = β(0) is functionally dependent on the other

variables.
Another example is more trivial: We can clearly always take β(0) = α(1) = ∅. Then the computation

proceeds without any improvement. But this example shows that we can always assume that a suitable
partitioning of the α’s and β’s exists; hence the same program can drive the vertex elimination algorithm in
either case.
The following program recognizes simple cases in which α(0) consists of unit clauses l1 ∧ · · · ∧ lk and β(0)

is a single clause l̄1 ∨ · · · ∨ l̄k equal to ¬α(0). (Thus it detects a functional dependency that’s AND, OR,
NAND, or NOR.) If it finds such an example, it doesn’t keep looking for another dependency, even though
more efficient partitions may exist. It sets beta0 = cc when cc is the clause x̄ ∨ l̄1 ∨ · · · ∨ l̄k, and it sets
lmem [l̄i].extra = stamp for 1 ≤ i ≤ k; here stamp is an integer that uniquely identifies such literals. But if
no such case is discovered, the program sets beta0 = 0 and no literals have an extra that matches stamp .
(If I had more time I could look also for cases where x = l1 ⊕ l2, or x = ⟨l1l2l3⟩, or x = (l1? l2: l3), etc.)

⟨Partition the α’s and β’s if a simple functional dependency is found 74 ⟩ ≡
{
register ullng stbits = 0; /∗ signature of the l̄i ∗/
beta0 = 0, stamp++;
ll = bar (l);
⟨Stamp all literals that appear with l in binary clauses 75 ⟩;
if (stbits) {
o, stbits |= litsig (ll);
for (o, p = down (ll); ¬is lit (p); o, p = down (p)) {

o, c = mem [p].cls ;
if (o, (clssig (c) &∼stbits) ≡ 0)
⟨ If the complements of all other literals in c are stamped, set beta0 = c and break 76 ⟩;

}
}
if (beta0) {
stamp++;
⟨Stamp the literals of clause beta0 77 ⟩;

}
}

This code is used in section 78.

§75 SAT12 VARIABLE ELIMINATION 35

75. ⟨Stamp all literals that appear with l in binary clauses 75 ⟩ ≡
for (o, p = down (l); ¬is lit (p); o, p = down (p)) {
if (oo , size (mem [p].cls) ≡ 2) {
o, q = right (p);
if (is cls (q)) o, q = left (p);
oo , lmem [mem [q].lit].extra = stamp ;
o, stbits |= litsig (bar (mem [q].lit));

}
}

This code is used in section 74.

76. ⟨ If the complements of all other literals in c are stamped, set beta0 = c and break 76 ⟩ ≡
{
for (o, q = left (p); q ̸= p; o, q = left (q)) {
if (is cls (q)) continue;
if (oo , lmem [bar (mem [q].lit)].extra ̸= stamp) break;

}
if (q ≡ p) {

beta0 = c;
break;

}
}

This code is used in section 74.

77. ⟨Stamp the literals of clause beta0 77 ⟩ ≡
if (mem [p].cls ̸= beta0 ∨mem [p].lit ̸= ll) confusion ("partitioning");
for (o, q = left (p); q ̸= p; o, q = left (q)) {
if (is cls (q)) continue;
oo , lmem [bar (mem [q].lit)].extra = stamp ;

}
This code is used in section 74.

36 VARIABLE ELIMINATION SAT12 §78

78. Now comes the main loop where we test whether the elimination of variable x is desirable.
If both x and bar (x) occur in more than cutoff clauses, we don’t attempt to do anything here, because

we assume that the elimination of x will almost surely add more clauses than it removes.
The resolvent clauses are formed as singly linked lists (via left fields), terminated by 0. They’re linked

together via down fields, starting at down (0) and ending at last new .

⟨Either generate the clauses to eliminate variable x, or goto elim done 78 ⟩ ≡
l = pos lit (x);
oo , clauses saved = occurs (l) + occurs (l + 1);
if ((occurs (l) > cutoff) ∧ (occurs (l + 1) > cutoff)) goto elim done ;
if ((ullng) occurs (l) ∗ occurs (l + 1) > occurs (l) + occurs (l + 1) + optimism) goto elim done ;
elim tries++;
⟨Partition the α’s and β’s if a simple functional dependency is found 74 ⟩;
if (beta0 ≡ 0) {
l++; /∗ if at first you don’t succeed, . . . ∗/
⟨Partition the α’s and β’s if a simple functional dependency is found 74 ⟩;

}
if (beta0) func total ++;
if (verbose & show restrials) {
if (beta0)

fprintf (stderr , "␣maybe␣elim␣"O"s␣("O"u,"O"d)\n", vmem [x].name .ch8 , beta0 , size (beta0)− 1);
else fprintf (stderr , "␣maybe␣elim␣"O"s\n", vmem [x].name .ch8);

}
last new = 0;
for (o, alf = down (l); ¬is lit (alf); o, alf = down (alf)) {
o, c = mem [alf].cls ;
⟨Decide whether c belongs to α(0) or α(1) 79 ⟩;
for (o, bet = down (ll); ¬is lit (bet); o, bet = down (bet)) {

o, cc = mem [bet].cls ;
if (cc ≡ beta0 ∧ alpha0) continue;
if (cc ̸= beta0 ∧ ¬alpha0) continue;
⟨Resolve c and cc with respect to l 66 ⟩;
if (p) { /∗ we have a new resolvent ∗/
o, left (p) = 0; /∗ complete the tentative clause ∗/
oo , down (last new) = left (1);
o, last new = left (1), right (last new) = p;
if (−−clauses saved < 0) ⟨Discard the new resolvents and goto elim done 80 ⟩;
up(last new) = c,mem [last new].cls = cc ; /∗ diagnostic only, no mem cost ∗/

}
}

}
o, down (last new) = 0; /∗ complete the vertical list of new clauses ∗/

This code is used in section 83.

§79 SAT12 VARIABLE ELIMINATION 37

79. ⟨Decide whether c belongs to α(0) or α(1) 79 ⟩ ≡
if (beta0 ≡ 0) alpha0 = 1;
else {
alpha0 = 0;
if (o, size (c) ≡ 2) {
o, q = right (c);
if (q ≡ alf) q = left (c);
if (oo , lmem [mem [q].lit].extra ≡ stamp) alpha0 = 1; /∗ yes, c ∈ α(0) ∗/

}
}

This code is used in section 78.

80. Too bad: We found more resolvents than the clauses they would replace.

⟨Discard the new resolvents and goto elim done 80 ⟩ ≡
{
for (o, p = down (0); ; o, p = down (p)) {

o, free cells (right (p), p);
if (p ≡ last new) break;

}
goto elim done ;

}
This code is used in section 78.

81. The stamp won’t overflow because I’m not going to increase it 264 times. (Readers in the 22nd century
might not believe me though, if Moore’s Law continues.)

⟨Global variables 4 ⟩ +≡
ullng stamp ; /∗ a time stamp for unique identification ∗/
uint beta0 ; /∗ a clause that defines β(0) in a good partition ∗/
uint alpha0 ; /∗ set to 1 if c is part of α(0) ∗/
uint last new ; /∗ the beginning of the last newly resolved clause ∗/
uint alf , bet ; /∗ loop indices for αi and βj ∗/
int clauses saved ; /∗ eliminating x saves at most this many clauses ∗/
uint ∗bucket ; /∗ heads of lists of candidates for elimination ∗/

82. ⟨Allocate the subsidiary arrays 52 ⟩ +≡
if (buckets < 2) buckets = 2;
bucket = (uint ∗) malloc((buckets + 1) ∗ sizeof (uint));
if (¬bucket) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣bucket␣array!\n");
exit (−14);

}
bytes += (buckets + 1) ∗ sizeof (uint);

38 VARIABLE ELIMINATION SAT12 §83

83. ⟨Try to eliminate variables 83 ⟩ ≡
⟨Place candidates for elimination into buckets 84 ⟩;
for (b = 2; b ≤ buckets ; b++)
if (o, bucket [b]) {
for (x = bucket [b]; x; o, x = vmem [x].blink)

if (o, vmem [x].stable ≡ 0) {
if (sanity checking) sanity ();
⟨Either generate the clauses to eliminate variable x, or goto elim done 78 ⟩;
⟨Eliminate variable x, replacing its clauses by the new resolvents 85 ⟩;
if (sanity checking) sanity ();
⟨Clear the strengthened stack 65 ⟩;

elim done : o, vmem [x].stable = 1;
}

}
This code is used in section 91.

84. ⟨Place candidates for elimination into buckets 84 ⟩ ≡
for (b = 2; b ≤ buckets ; b++) o, bucket [b] = 0;
for (x = vars ; x; x−−) {
if (o, vmem [x].stable) continue;
if (vmem [x].status) confusion ("touched␣and␣eliminated");
l = pos lit (x);
oo , p = occurs (l), q = occurs (l + 1);
if (p > cutoff ∧ q > cutoff) goto reject ;
b = p+ q;
if ((ullng) p ∗ q > b+ optimism) goto reject ;
if (b > buckets) b = buckets ;
oo , vmem [x].blink = bucket [b];
o, bucket [b] = x; continue;

reject : o, vmem [x].stable = 1;
}

This code is used in section 83.

85. ⟨Eliminate variable x, replacing its clauses by the new resolvents 85 ⟩ ≡
if (verbose & show details) {
fprintf (stderr , "elimination␣of␣"O"s", vmem [x].name .ch8);
if (beta0) fprintf (stderr , "␣("O"u,"O"d)", beta0 , size (beta0)− 1);
fprintf (stderr , "␣saves␣"O"d␣clause"O"s\n", clauses saved , clauses saved ≡ 1 ? "" : "s");

}
if (verbose & show resolutions) print clauses for (pos lit (x)), print clauses for (neg lit (x));
⟨Update the erp file for the elimination of x 86 ⟩;
oo , down (last new) = 0, last new = down (0);
v = pos lit (x);
⟨Replace the clauses of v by new resolvents 87 ⟩;
v++;
⟨Replace the clauses of v by new resolvents 87 ⟩;
⟨Recycle the cells of clauses that involve v 88 ⟩;
v−−;
⟨Recycle the cells of clauses that involve v 88 ⟩;
o, vmem [x].status = elim res , vars gone++;
clauses gone += clauses saved ;

This code is used in section 83.

§86 SAT12 VARIABLE ELIMINATION 39

86. ⟨Update the erp file for the elimination of x 86 ⟩ ≡
if (beta0) {
fprintf (erp file , ""O"s"O".8s␣<−1\n", litname (l));
for (o, q = right (beta0); ¬is cls (q); o, q = right (q))
if (o,mem [q].lit ̸= ll) fprintf (erp file , "␣"O"s"O".8s", litname (mem [q].lit));

fprintf (erp file , "\n");
} else {
o, k = occurs (l), v = l;
if (o, k > occurs (ll)) k = occurs (ll), v = ll ;
fprintf (erp file , ""O"s"O".8s␣<−"O"d\n", litname (bar (v)), k);
for (o, p = down (v); ¬is lit (p); o, p = down (p)) {
for (o, q = right (p); q ̸= p; o, q = right (q))
if (¬is cls (q)) o, fprintf (erp file , "␣"O"s"O".8s", litname (mem [q].lit));

fprintf (erp file , "\n");
}

}
This code is used in section 85.

87. We can’t remove the old cells until after inserting the new ones, because we don’t want false claims of
pure literals. But we can safely detach those cells from the old clause heads.

⟨Replace the clauses of v by new resolvents 87 ⟩ ≡
for (o, p = down (v); ¬is lit (p); o, p = down (p)) {
o, c = mem [p].cls ;
o, q = right (c), r = left (c);
oo , left (q) = r, right (r) = q;
⟨Replace clause c by a new resolvent, if any 89 ⟩;

}
This code is used in section 85.

88. Every literal that appears in a new resolvent will be touched when we recycle the clauses that were
resolved.

⟨Recycle the cells of clauses that involve v 88 ⟩ ≡
for (o, p = down (v); ¬is lit (p); o, p = down (p)) {
for (o, q = right (p); q ̸= p; o, q = right (q)) {
o, r = up(q), w = down (q);
oo , down (r) = w, up(w) = r;
o, w = mem [q].lit ;
touch (w);
oo , occurs (w)−−, littime (w) = time ;
if (occurs (w) ≡ 0) {

if (verbose & show details)
fprintf (stderr , "literal␣"O"s"O".8s␣no␣longer␣appears\n", litname (w));

⟨Set literal w to false unless it’s already set 51 ⟩;
}

}
free cells (right (p), p);

}
This code is used in section 85.

40 VARIABLE ELIMINATION SAT12 §89

89. A new resolvent last new is waiting to be launched as an official clause, unless last new = 0.

⟨Replace clause c by a new resolvent, if any 89 ⟩ ≡
if (last new) {
if (verbose & show details)
fprintf (stderr , "clause␣"O"u␣now␣"O"u␣res␣"O"u\n", c, up(last new),mem [last new].cls);

o, pp = down (last new);
⟨ Install last new into position c 90 ⟩;
if (verbose & show resolutions) print clause (c);
o,newsize (c) = 1;
o, last new = pp ;

}
else o, size (c) = 0;

This code is used in section 87.

90. ⟨ Install last new into position c 90 ⟩ ≡
for (q = last new , r = c, s = 0, bits = 0; q; o, r = q, q = left (q)) {
o, u = mem [q].lit ;
oo , occurs (u)++;
o, w = up(u);
oo , up(u) = down (w) = q;
o, up(q) = w, down (q) = u;
o, bits |= litsig (u);
o, right (q) = r;
o,mem [q].cls = c;
s++;

}
oo , size (c) = s, clssig (c) = bits ;
oo , left (c) = last new , right (c) = r, left (r) = c;
if (s ≡ 1) {
o, w = mem [r].lit ;
if (verbose & show details) fprintf (stderr , "clause␣"O"u␣is␣just␣"O"s"O".8s\n", c, litname (w));
⟨Force literal w to be true 50 ⟩;

}
This code is used in section 89.

§91 SAT12 THE DÉNOUEMENT 41

91. The dénouement. (dénouement, n.: The final resolution of the intricacies of a plot; the outcome
or resolution of a doubtful series of occurrences.)

⟨Preprocess until everything is stable 91 ⟩ ≡
if (verbose & show initial clauses) print all ();
if (sanity checking) sanity ();
⟨Put all clauses into the strengthened stack 92 ⟩;
⟨Clear the strengthened stack 65 ⟩;
for (time = 1; time ≤ maxrounds ; time++) {
int progress = vars gone ;

if (verbose & show rounds)
fprintf (stderr , "beginning␣round␣"O"u␣("O"d␣vars,␣"O"d␣clauses␣gone,␣"O"llu␣mems)\n",

time , vars gone , clauses gone ,mems);
⟨Try to eliminate variables 83 ⟩;
if (progress ≡ vars gone ∨ vars gone ≡ vars) break;
⟨Do a round of subsumption/strengthening on the new clauses 93 ⟩;

}
if (time > maxrounds) time = maxrounds ;

This code is used in section 3.

92. At the beginning we might as well consider every clause to be “strengthened,” because we want to
exploit its ability to subsume and strengthen other clauses.

⟨Put all clauses into the strengthened stack 92 ⟩ ≡
o, slink (lit head top) = sentinel ,newsize (lit head top) = 0;
for (c = lit head top + 1; is cls (c); c++) o, slink (c) = c− 1,newsize (c) = 0;
strengthened = c− 1;

This code is used in section 91.

42 THE DÉNOUEMENT SAT12 §93

93. Clauses that have been strengthened have also been fully exploited at this point. But the other existing
clauses might subsume any of the new clauses generated by the last round of variable elimination, if all of
their literals appear in at least one new clause. Such a clause C might also strengthen another new clause C ′,
if C itself is new, or if all but one of C’s literals are in C ′ and so is the complement of the other.
The value of newsize (c) at this point is 1 if and only if c is new, otherwise it’s 0. (At least, this statement

is true whenever size (c) is nonzero. All clauses with size (c) = 0 are permanently gone and essentially
forgotten.)
Also, a given literal l has appeared in a new clause of the current round if and only if littime (l) = time .
So we run through all such literals, adding 4 to newsize (c) for each clause they’re in, also ORing 2 into

newsize (c) for each clause that their complement is in. The resulting newsize values will help us to decide
a reasonably high speed whether an existing clause can be exploited.

⟨Do a round of subsumption/strengthening on the new clauses 93 ⟩ ≡
for (l = 2; is lit (l); l++) {
if ((l & 1) ≡ 0 ∧ (o, vmem [thevar (l)].status)) {
l++; continue; /∗ bypass eliminated variables ∗/

}
if (o, littime (l) ≡ time) ⟨Update newsize info for l’s clauses 96 ⟩;

}
for (c = lit head top ; is cls (c); c++)
if (o, size (c)) {
if (clstime (c) < time) { /∗ c not recently exploited ∗/

if (o, size (c) ≡ newsize (c) ≫ 2) {
⟨Remove clauses subsumed by c 57 ⟩;
⟨Clear the strengthened stack 65 ⟩;

} else if (newsize (c) & 1) confusion ("new␣clause␣not␣all␣new");
if (newsize (c) & #3) ⟨Maybe try to strengthen with c 94 ⟩;

}
o,newsize (c) = 0;

}
This code is used in section 91.

94. ⟨Maybe try to strengthen with c 94 ⟩ ≡
{
if (newsize (c) & 1) specialcase = 0; /∗ c is a new clause ∗/
else {
if (newsize (c) ≫ 2 < size (c)− 1) specialcase = −1;
else specialcase = 1;

}
if (specialcase ≥ 0) {

⟨Strengthen clauses that c can improve 61 ⟩;
⟨Clear the strengthened stack 65 ⟩;

}
}

This code is used in section 93.

95. ⟨Reject u unless it fills special conditions 95 ⟩ ≡
{
if (o, littime (bar (u)) ̸= time) continue; /∗ reject if ū not new ∗/
if (o,newsize (c) ≫ 2 ̸= size (c)− (littime (u) ̸= time)) continue;

/∗ reject if all other literals of c aren’t new ∗/
}

This code is used in section 61.

§96 SAT12 THE DÉNOUEMENT 43

96. ⟨Update newsize info for l’s clauses 96 ⟩ ≡
{
for (o, p = down (l); ¬is lit (p); o, p = down (p)) {
o, c = mem [p].cls ;
oo ,newsize (c) += 4;

}
for (o, p = down (bar (l)); ¬is lit (p); o, p = down (p)) {
o, c = mem [p].cls ;
oo ,newsize (c) |= 2;

}
}

This code is used in section 93.

97. ⟨Output the simplified clauses 97 ⟩ ≡
for (c = lit head top ; is cls (c); c++)
if (o, size (c)) {
for (o, p = right (c); ¬is cls (p); o, p = right (p)) {

o, l = mem [p].lit ;
printf ("␣"O"s"O".8s", litname (l));

}
printf ("\n");

}
if (vars gone ≡ vars) {
if (clauses gone ̸= clauses) confusion ("vars␣gone␣but␣not␣clauses");
if (verbose & show basics) fprintf (stderr , "No␣clauses␣remain.\n");

} else if (clauses gone ≡ clauses) confusion ("clauses␣gone␣but␣not␣vars");
else if (verbose & show basics) fprintf (stderr ,

""O"d␣variable"O"s␣and␣"O"d␣clause"O"s␣removed␣("O"d␣round"O"s).\n", vars gone ,
vars gone ≡ 1 ? "" : "s", clauses gone , clauses gone ≡ 1 ? "" : "s", time , time ≡ 1 ? "" : "s");

if (0) {
unsat : fprintf (stderr , "The␣clauses␣are␣unsatisfiable.\n");
}

This code is used in section 3.

98. ⟨Subroutines 26 ⟩ +≡
void confusion (char ∗id)
{ /∗ an assertion has failed ∗/
fprintf (stderr , "This␣can’t␣happen␣("O"s)!\n", id);
exit (−69);

}
void debugstop(int foo)
{ /∗ can be inserted as a special breakpoint ∗/
fprintf (stderr , "You␣rang("O"d)?\n", foo);

}

44 INDEX SAT12 §99

99. Index.

aa : 3.
alf : 78, 79, 81.
alpha0 : 78, 79, 81.
argc : 3, 5.
argv : 3, 5.
avail : 36, 37, 38, 39.
b: 3.
bad c : 35.
bad cell : 8, 12, 14, 20.
bad l : 34.
bad tmp var : 8, 12, 13, 21.
bar : 27, 54, 61, 62, 63, 66, 74, 75, 76, 77, 78,

86, 95, 96.
bet : 78, 81.
beta0 : 74, 76, 77, 78, 79, 81, 85, 86.
bits : 3, 33, 35, 49, 55, 57, 61, 90.
blink : 27, 83, 84.
bucket : 81, 82, 83, 84.
buckets : 4, 5, 82, 83, 84.
buf : 8, 9, 10, 11, 16, 19, 41.
buf size : 4, 5, 9, 10.
bytes : 3, 4, 41, 52, 82.
c: 3, 30, 31, 33, 53, 65.
cc : 3, 43, 57, 59, 60, 61, 62, 63, 64, 66, 74, 78.
ccbits : 63.
cel: 25, 39, 41.
cell : 7, 14, 20, 25, 45.
cell struct: 25.
cells : 8, 10, 11, 22, 41, 42.
cells per chunk : 7, 14, 20.
chunk: 7, 8, 14, 20.
chunk struct: 7.
ch8 : 6, 16, 27, 32, 78, 85.
clause: 29, 39, 52.
clause done : 11.
clauses : 8, 10, 11, 12, 16, 19, 22, 41, 42, 52, 97.
clauses gone : 39, 56, 60, 85, 91, 97.
clauses saved : 78, 81, 85.
cls : 25, 26, 32, 35, 43, 47, 54, 56, 57, 61, 74,

75, 77, 78, 87, 89, 90, 96.
cls head top : 25, 33, 39, 41, 42.
cls struct: 29.
clsinf : 25.
clssig : 25, 26, 35, 49, 55, 57, 61, 63, 74, 90.
clstime : 25, 26, 49, 65, 93.
cmem : 29, 39, 52.
confusion : 45, 47, 49, 64, 77, 84, 93, 97, 98.
counta : 33, 36.
countc : 33, 35.
countl : 33, 34.
cur cell : 8, 12, 14, 20, 43, 45.

cur chunk : 8, 14, 20, 45.
cur tmp var : 8, 12, 13, 16, 17, 21, 44, 45.
cur vchunk : 8, 13, 21, 45.
cutoff : 4, 5, 78, 84.
debugstop : 98.
down : 25, 26, 32, 34, 42, 43, 47, 54, 56, 57, 60, 61,

63, 74, 75, 78, 80, 85, 86, 87, 88, 89, 90, 96.
elim done : 78, 80, 83.
elim quiet : 27, 32, 51, 53.
elim res : 27, 32, 85.
elim tries : 3, 4, 78.
empty clause : 11, 16, 18.
erp file : 4, 5, 53, 86.
erp file name : 3, 4, 5.
exit : 5, 9, 10, 11, 13, 14, 16, 37, 41, 42, 52, 82, 98.
extra : 28, 52, 74, 75, 76, 77, 79.
fgets : 10.
filler : 27.
finish up : 3, 53.
foo : 98.
fopen : 5.
forced false : 27, 32, 50, 51.
forced true : 27, 32, 50, 51, 53.
fprintf : 3, 5, 9, 10, 11, 13, 14, 16, 19, 22, 26,

30, 32, 33, 34, 35, 36, 37, 41, 42, 47, 49, 52,
53, 54, 56, 57, 60, 61, 63, 64, 78, 82, 85, 86,
88, 89, 90, 91, 97, 98.

free : 20, 21, 41, 45.
free cell : 38, 54, 63.
free cells : 38, 56, 60, 73, 80, 88.
func total : 3, 4, 78.
gb init rand : 9.
gb next rand : 15, 48.
gb rand : 4.
get cell : 37, 70, 71, 72.
h: 3.
hack clean : 43.
hack in : 12.
hack out : 43.
hash : 8, 9, 17, 41.
hash bits : 8, 15, 16.
hbits : 4, 5, 9, 10, 16.
i: 3.
id : 98.
imems : 3, 4.
is cls : 25, 26, 30, 31, 33, 35, 36, 46, 49, 55,

56, 58, 59, 60, 61, 62, 63, 67, 68, 75, 76,
77, 86, 92, 93, 97.

is lit : 25, 26, 30, 32, 33, 34, 42, 46, 47, 54, 56, 57,
61, 74, 75, 78, 86, 87, 88, 93, 96.

j: 3.

§99 SAT12 INDEX 45

k: 3, 26, 30, 32, 33, 37, 38, 50, 51.
kk : 38.
l: 3, 30, 32, 33.
last new : 78, 80, 81, 85, 89, 90.
left : 25, 26, 35, 36, 37, 38, 43, 47, 49, 54, 56, 57,

59, 60, 61, 62, 63, 66, 67, 68, 70, 71, 72, 73,
75, 76, 77, 78, 79, 87, 90.

link : 27, 29, 50, 51, 53.
lit : 25, 26, 30, 34, 35, 43, 49, 54, 55, 56, 58, 59,

60, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 75,
76, 77, 79, 86, 88, 90, 97.

lit head top : 25, 29, 31, 39, 41, 43, 52, 92, 93, 97.
lit struct: 28.
literal: 28, 39, 52.
litinf : 25.
litname : 27, 30, 32, 47, 49, 53, 54, 56, 60, 61,

63, 64, 86, 88, 90, 97.
litsig : 25, 26, 35, 48, 49, 55, 61, 63, 74, 75, 90.
littime : 25, 26, 47, 88, 93, 95.
ll : 3, 54, 56, 57, 58, 59, 61, 62, 66, 74, 77, 78, 86.
lmem : 39, 52, 74, 75, 76, 77, 79.
lng : 6, 16, 17, 25, 44.
main : 3.
malloc : 9, 13, 14, 41, 52, 82.
maxrounds : 4, 5, 91.
mem : 4, 5, 25, 26, 30, 32, 33, 34, 35, 36, 38, 39,

41, 43, 47, 49, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 76,
77, 78, 79, 86, 87, 88, 89, 90, 96, 97.

mem max : 4, 5, 25, 37, 41.
mems : 3, 4, 5, 48, 53, 91.
name : 6, 16, 17, 27, 32, 44, 78, 85.
neg lit : 27, 53, 85.
new chunk : 14.
new vchunk : 13.
newsize : 29, 65, 89, 92, 93, 94, 95, 96.
next : 6, 17.
norm : 27, 33, 50, 51.
nullclauses : 8, 10, 11, 19.
O: 3.
o: 3.
occurs : 25, 26, 34, 47, 56, 58, 60, 63, 78, 84,

86, 88, 90.
octa: 6, 25, 27.
old chunk : 20.
old vchunk : 21.
oo : 3, 49, 54, 55, 56, 59, 60, 62, 63, 64, 66, 70, 71,

72, 75, 76, 77, 78, 79, 84, 85, 87, 88, 90, 96.
ooo : 3, 43, 47, 57, 58, 61.
optimism : 4, 5, 78, 84.
p: 3, 12.
pos lit : 27, 53, 78, 84, 85.

pp : 3, 57, 61, 89.
prev : 6, 7, 13, 14, 20, 21, 45.
print all : 31, 91.
print clause : 30, 31, 89.
print clauses for : 32, 85.
printf : 97.
progress : 91.
q: 3.
qq : 3, 59, 62.
r: 3.
random seed : 4, 5, 9.
rbits : 3, 48.
reject : 84.
right : 25, 26, 30, 35, 49, 54, 55, 56, 58, 60, 63, 64,

75, 78, 79, 80, 86, 87, 88, 90, 97.
s: 3, 33.
sanity : 33, 53, 83, 91.
sanity checking : 33, 53, 83, 91.
sentinel : 29, 65, 92.
serial : 6, 17, 43.
show basics : 3, 4, 53, 97.
show cell : 26.
show details : 4, 47, 49, 54, 56, 60, 63, 64, 85,

88, 89, 90.
show initial clauses : 4, 91.
show lit ids : 4, 30, 32.
show resolutions : 4, 85, 89.
show restrials : 4, 78.
show rounds : 4, 91.
show subtrials : 4, 57, 61.
size : 25, 26, 29, 30, 31, 33, 35, 49, 54, 56, 57, 60,

61, 64, 65, 75, 78, 79, 85, 89, 90, 93, 94, 95, 97.
slink : 29, 54, 63, 65, 92.
spare : 27.
specialcase : 3, 61, 65, 94.
sprintf : 5.
sscanf : 5.
stable : 27, 44, 51, 53, 83, 84.
stamp : 6, 12, 17, 18, 74, 75, 76, 77, 79, 81.
status : 27, 32, 33, 44, 50, 51, 53, 84, 85, 93.
stbits : 74, 75.
stderr : 3, 5, 9, 10, 11, 13, 14, 16, 19, 22, 26,

30, 32, 33, 34, 35, 36, 37, 41, 42, 47, 49, 52,
53, 54, 56, 57, 60, 61, 63, 64, 78, 82, 85, 88,
89, 90, 91, 97, 98.

stdin : 1, 8, 10.
str false : 3, 4, 61.
str total : 3, 4, 63.
str tries : 3, 4, 61.
strengthened : 29, 39, 54, 63, 65, 92.
strlen : 10.
sub false : 3, 4, 57.

46 INDEX SAT12 §99

sub total : 3, 4, 60.
sub tries : 3, 4, 57.
t: 3, 55.
thevar : 27, 32, 33, 35, 50, 51, 93.
time : 39, 65, 88, 91, 93, 95, 97.
timeout : 4, 5, 53.
tmp var: 6, 7, 8, 9, 12, 43.
tmp var struct: 6.
to do : 27, 33, 39, 50, 51, 53.
touch : 27, 56, 60, 63, 88.
u: 3.
ubits : 61.
uint: 3, 4, 6, 8, 25, 26, 27, 29, 30, 31, 32, 33,

37, 38, 39, 53, 55, 65, 81, 82.
ullng: 3, 4, 6, 8, 12, 28, 33, 43, 55, 61, 63,

74, 78, 81, 84.
unsat : 50, 97.
up : 25, 26, 34, 47, 56, 60, 63, 78, 88, 89, 90.
uu : 3, 66, 68, 71.
u2 : 6, 25.
v: 3.
var : 6, 13, 21, 45.
var struct: 27.
variable: 27, 39, 41.
vars : 8, 10, 17, 22, 41, 44, 84, 91, 97.
vars gone : 39, 53, 85, 91, 97.
vars per vchunk : 6, 13, 21.
vchunk: 6, 8, 13, 21.
vchunk struct: 6.
verbose : 3, 4, 5, 30, 32, 47, 49, 53, 54, 56, 57, 60,

61, 63, 64, 78, 85, 88, 89, 90, 91, 97.
vmem : 27, 32, 33, 39, 41, 44, 50, 51, 53, 78,

83, 84, 85, 93.
vv : 3, 61, 66, 68.
w: 3.
ww : 3.
x: 3.
xcells : 3, 4, 33, 34, 35, 36, 37, 41.

SAT12 NAMES OF THE SECTIONS 47

⟨Allocate the main arrays 41 ⟩ Used in section 40.

⟨Allocate the subsidiary arrays 52, 82 ⟩ Used in section 40.

⟨Check consistency 45 ⟩ Used in section 40.

⟨Check the avail list 36 ⟩ Used in section 33.

⟨Choose a literal l ∈ c on which to branch 58 ⟩ Used in section 57.

⟨Clear the strengthened stack 65 ⟩ Used in sections 83, 91, 93, and 94.

⟨Clear the to-do stack 53 ⟩ Used in section 65.

⟨Copy all the temporary cells to the mem array in proper format 42 ⟩ Used in section 40.

⟨Copy all the temporary variable nodes to the vmem array in proper format 44 ⟩ Used in section 40.

⟨Copy uu and move vv left 71 ⟩ Used in section 66.

⟨Copy u and move both v and vv left 72 ⟩ Used in section 66.

⟨Copy u and move v left 70 ⟩ Used in section 66.

⟨Decide whether c belongs to α(0) or α(1) 79 ⟩ Used in section 78.

⟨Decrease size (cc) 64 ⟩ Used in section 63.

⟨Delete all clauses that contain l 56 ⟩ Used in section 53.

⟨Delete bar (l) from all clauses 54 ⟩ Used in section 53.

⟨Discard the new resolvents and goto elim done 80 ⟩ Used in section 78.

⟨Do a round of subsumption/strengthening on the new clauses 93 ⟩ Used in section 91.

⟨Either generate the clauses to eliminate variable x, or goto elim done 78 ⟩ Used in section 83.

⟨Eliminate variable x, replacing its clauses by the new resolvents 85 ⟩ Used in section 83.

⟨Find cur tmp var⃗name in the hash table at p 17 ⟩ Used in section 12.

⟨Finish building the cell data structures 46 ⟩ Used in section 40.

⟨Force literal w to be true 50 ⟩ Used in sections 49, 54, 64, and 90.

⟨Global variables 4, 8, 39, 81 ⟩ Used in section 3.

⟨Handle a duplicate literal 18 ⟩ Used in section 12.

⟨ If the complements of all other literals in c are stamped, set beta0 = c and break 76 ⟩ Used in section 74.

⟨ If c is contained in cc , except for u, make l ≤ ll 62 ⟩ Used in section 61.

⟨ If c is contained in cc , make l ≤ ll 59 ⟩ Used in section 57.

⟨ Initialize everything 9, 15 ⟩ Used in section 3.

⟨ Input the clause in buf 11 ⟩ Used in section 10.

⟨ Input the clauses 10 ⟩ Used in section 3.

⟨ Insert the cells for the literals of clause c 43 ⟩ Used in section 42.

⟨ Install a new chunk 14 ⟩ Used in section 12.

⟨ Install a new vchunk 13 ⟩ Used in section 12.

⟨ Install last new into position c 90 ⟩ Used in section 89.

⟨Maybe try to strengthen with c 94 ⟩ Used in section 93.

⟨Move both v and vv left 69 ⟩ Used in sections 66 and 72.

⟨Move cur cell backward to the previous cell 20 ⟩ Used in sections 19 and 43.

⟨Move cur tmp var backward to the previous temporary variable 21 ⟩ Used in section 44.

⟨Move vv left 68 ⟩ Used in sections 69 and 71.

⟨Move v left 67 ⟩ Used in sections 69 and 70.

⟨Output the simplified clauses 97 ⟩ Used in section 3.

⟨Partition the α’s and β’s if a simple functional dependency is found 74 ⟩ Used in section 78.

⟨Place candidates for elimination into buckets 84 ⟩ Used in section 83.

⟨Preprocess until everything is stable 91 ⟩ Used in section 3.

⟨Process the command line 5 ⟩ Used in section 3.

⟨Put all clauses into the strengthened stack 92 ⟩ Used in section 91.

⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩ Used

in section 12.

⟨Recompute clssig (c) 55 ⟩ Used in section 54.

⟨Recycle the cells of clauses that involve v 88 ⟩ Used in section 85.

⟨Reject u unless it fills special conditions 95 ⟩ Used in section 61.

48 NAMES OF THE SECTIONS SAT12

⟨Remove all variables of the current clause 19 ⟩ Used in section 11.

⟨Remove clauses subsumed by c 57 ⟩ Used in sections 65 and 93.

⟨Remove the subsumed clause cc 60 ⟩ Used in section 57.

⟨Remove bar (u) from cc 63 ⟩ Used in section 61.

⟨Replace clause c by a new resolvent, if any 89 ⟩ Used in section 87.

⟨Replace the clauses of v by new resolvents 87 ⟩ Used in section 85.

⟨Report the successful completion of the input phase 22 ⟩ Used in section 3.

⟨Resolve c and cc with respect to l 66 ⟩ Used in section 78.

⟨Return a tautology 73 ⟩ Used in section 66.

⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩ Used in section 11.

⟨Set literal w to false unless it’s already set 51 ⟩ Used in sections 47, 56, 60, 63, and 88.

⟨Set the right links for c, and its signature and size 49 ⟩ Used in section 46.

⟨Set the up links for l and the left links of its cells 47 ⟩ Used in section 46.

⟨Set up the main data structures 40 ⟩ Used in section 3.

⟨Set litsig (l) 48 ⟩ Used in section 47.

⟨Stamp all literals that appear with l in binary clauses 75 ⟩ Used in section 74.

⟨Stamp the literals of clause beta0 77 ⟩ Used in section 74.

⟨Strengthen clauses that c can improve 61 ⟩ Used in sections 65 and 94.

⟨Subroutines 26, 30, 31, 32, 33, 37, 38, 98 ⟩ Used in section 3.

⟨Try to eliminate variables 83 ⟩ Used in section 91.

⟨Type definitions 6, 7, 25, 27, 28, 29 ⟩ Used in section 3.

⟨Update the erp file for the elimination of x 86 ⟩ Used in section 85.

⟨Update newsize info for l’s clauses 96 ⟩ Used in section 93.

⟨Verify the cells for clause c 35 ⟩ Used in section 33.

⟨Verify the cells for literal l 34 ⟩ Used in section 33.

SAT12

Section Page
Intro . 1 1
The I/O wrapper . 6 6
SAT preprocessing . 23 13
Initializing the real data structures . 40 20
Clearing the to-do stack . 53 25
Subsumption testing . 57 27
Strengthening . 61 29
Clearing the strengthened stack . 65 31
Variable elimination . 66 32
The dénouement . 91 41
Index . 99 44

