
§1 GB PLANE INTRODUCTION 1

Important: Before reading GB PLANE, please read or at least skim the program for GB MILES.

1. Introduction. This GraphBase module contains the plane subroutine, which constructs undirected
planar graphs from vertices located randomly in a rectangle, as well as the plane miles routine, which
constructs planar graphs based on the mileage and coordinate data in miles.dat. Both routines use a
general-purpose delaunay subroutine, which computes the Delaunay triangulation of a given set of points.

#define plane miles p miles /∗ abbreviation for Procrustean external linkage ∗/
⟨ gb_plane.h 1 ⟩ ≡
#define plane miles p miles
extern Graph ∗plane ();
extern Graph ∗plane miles ();
extern void delaunay ();

See also sections 2 and 7.

2. The subroutine call plane (n, x range , y range , extend , prob , seed) constructs a planar graph whose ver-
tices have integer coordinates uniformly distributed in the rectangle

{ (x, y) | 0 ≤ x < x range , 0 ≤ y < y range } .

The values of x range and y range must be at most 214 = 16384; the latter value is the default, which is
substituted if x range or y range is given as zero. If extend ≡ 0, the graph will have n vertices; otherwise it
will have n+ 1 vertices, where the (n+ 1)st is assigned the coordinates (−1,−1) and may be regarded as a
point at ∞. Some of the n finite vertices might have identical coordinates, particularly if the point density
n/(x range ∗ y range) is not very small.
The subroutine works by first constructing the Delaunay triangulation of the points, then discarding each

edge of the resulting graph with probability prob/65536. Thus, for example, if prob is zero the full Delaunay
triangulation will be returned; if prob ≡ 32768, about half of the Delaunay edges will remain. Each finite
edge is assigned a length equal to the Euclidean distance between points, multiplied by 210 and rounded to
the nearest integer. If extend ̸= 0, the Delaunay triangulation will also contain edges between ∞ and all
points of the convex hull; such edges, if not discarded, are assigned length 228, otherwise known as INFTY.

If extend ̸= 0 and prob ≡ 0, the graph will have n + 1 vertices and 3(n − 1) edges; this is the maximum
number of edges that a planar graph on n + 1 vertices can have. In such a case the average degree of a
vertex will be 6(n − 1)/(n + 1), slightly less than 6; hence, if prob ≡ 32768, the average degree of a vertex
will usually be near 3.
As with all other GraphBase routines that rely on random numbers, different values of seed will produce

different graphs, in a machine-independent fashion that is reproducible on many different computers. Any
seed value between 0 and 231 − 1 is permissible.

#define INFTY #10000000L /∗ “infinite” length ∗/
⟨ gb_plane.h 1 ⟩ +≡
#define INFTY #10000000L

3. If the plane routine encounters a problem, it returns Λ (NULL), after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise plane returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }

2 INTRODUCTION GB PLANE §4

4. Here is the overall shape of the C file gb_plane.c :

#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
#include "gb_miles.h" /∗ and we might use GB MILES for mileage data ∗/
#include "gb_io.h" /∗ and GB MILES uses GB IO, which has str buf ∗/

⟨Preprocessor definitions ⟩
⟨Type declarations 25 ⟩
⟨Global variables 10 ⟩
⟨Subroutines for arithmetic 13 ⟩
⟨Other subroutines 12 ⟩
⟨The delaunay routine 9 ⟩
⟨The plane routine 5 ⟩
⟨The plane miles routine 41 ⟩

5. ⟨The plane routine 5 ⟩ ≡
Graph ∗plane (n, x range , y range , extend , prob , seed)

unsigned long n; /∗ number of vertices desired ∗/
unsigned long x range , y range ; /∗ upper bounds on rectangular coordinates ∗/
unsigned long extend ; /∗ should a point at infinity be included? ∗/
unsigned long prob ; /∗ probability of rejecting a Delaunay edge ∗/
long seed ; /∗ random number seed ∗/

{ Graph ∗new graph ; /∗ the graph constructed by plane ∗/
register Vertex ∗v; /∗ the current vertex of interest ∗/
register long k; /∗ the canonical all-purpose index ∗/
gb init rand (seed);
if (x range > 16384 ∨ y range > 16384) panic(bad specs); /∗ range too large ∗/
if (n < 2) panic(very bad specs); /∗ don’t make n so small, you fool ∗/
if (x range ≡ 0) x range = 16384; /∗ default ∗/
if (y range ≡ 0) y range = 16384; /∗ default ∗/
⟨Set up a graph with n uniformly distributed vertices 6 ⟩;
⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with

probability prob/65536, otherwise append them with their Euclidean length 11 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
if (extend) new graph⃗n++; /∗ make the “infinite” vertex legitimate ∗/
return new graph ;

}
This code is used in section 4.

§6 GB PLANE INTRODUCTION 3

6. The coordinates are placed into utility fields x coord and y coord . A random ID number is also stored
in utility field z coord ; this number is used by the delaunay subroutine to break ties when points are equal
or collinear or cocircular. No two vertices have the same ID number. (The header file gb_miles.h defines
x coord , y coord , and index no to be x.I, y.I, and z.I respectively.)

#define z coord z.I

⟨Set up a graph with n uniformly distributed vertices 6 ⟩ ≡
if (extend) extra n++; /∗ allocate one more vertex than usual ∗/
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "plane(%lu,%lu,%lu,%lu,%lu,%ld)", n, x range , y range , extend , prob , seed);
strcpy (new graph⃗util types , "ZZZIIIZZZZZZZZ");
for (k = 0, v = new graph⃗vertices ; k < n; k++, v++) {
v⃗ x coord = gb unif rand (x range);
v⃗ y coord = gb unif rand (y range);
v⃗ z coord = ((long)(gb next rand ()/n)) ∗ n+ k;
sprintf (str buf , "%ld", k); v⃗ name = gb save string (str buf);

}
if (extend) {
v⃗ name = gb save string ("INF");
v⃗ x coord = v⃗ y coord = v⃗ z coord = −1;
extra n−−;

}
This code is used in section 5.

7. ⟨ gb_plane.h 1 ⟩ +≡
#define x coord x.I
#define y coord y.I
#define z coord z.I

4 DELAUNAY TRIANGULATION GB PLANE §8

8. Delaunay triangulation. The Delaunay triangulation of a set of vertices in the plane consists of
all line segments uv such that there exists a circle passing through u and v containing no other vertices.
Equivalently, uv is a Delaunay edge if and only if the Voronoi regions for u and v are adjacent; the Voronoi
region of a vertex u is the polygon with the property that all points inside it are closer to u than to any
other vertex. In this sense, we can say that Delaunay edges connect vertices with their “neighbors.”
The definitions in the previous paragraph assume that no two vertices are equal, that no three vertices lie

on a straight line, and that no four vertices lie on a circle. If those nondegeneracy conditions aren’t satisfied,
we can perturb the points very slightly so that the assumptions do hold.
Another way to characterize the Delaunay triangulation is to consider what happens when we map a given

set of points onto the unit sphere via stereographic projection: Point (x, y) is mapped to(
2x/(r2 + 1), 2y/(r2 + 1), (r2 − 1)/(r2 + 1)

)
,

where r2 = x2 + y2. If we now extend the configuration by adding (0, 0, 1), which is the limiting point on
the sphere when r approaches infinity, the Delaunay edges of the original points turn out to be edges of
the polytope defined by the mapped points. This polytope, which is the 3-dimensional convex hull of n+ 1
points on the sphere, also has edges from (0, 0, 1) to the mapped points that correspond to the 2-dimensional
convex hull of the original points. Under our assumption of nondegeneracy, the faces of this polytope are all
triangles; hence its edges are said to form a triangulation.
A self-contained presentation of all the relevant theory, together with an exposition and proof of correctness

of the algorithm below, can be found in the author’s monograph Axioms and Hulls, Lecture Notes in
Computer Science 606 (Springer-Verlag, 1992). For further references, see Franz Aurenhammer, ACM
Computing Surveys 23 (1991), 345–405.

§9 GB PLANE DELAUNAY TRIANGULATION 5

9. The delaunay procedure, which finds the Delaunay triangulation of a given set of vertices, is the key
ingredient in gb plane ’s algorithms for generating planar graphs. The given vertices should appear in a
GraphBase graph g whose edges, if any, are ignored by delaunay . The coordinates of each vertex appear
in utility fields x coord and y coord , which must be nonnegative and less than 214 = 16384. The utility
field z coord must contain a unique ID number, distinct for every vertex, so that the algorithm can break
ties in cases of degeneracy. (Note: These assumptions about the input data are the responsibility of the
calling procedure; delaunay does not double-check them. If they are violated, catastrophic failure is possible.)
Instead of returning the Delaunay triangulation as a graph, delaunay communicates its answer implicitly

by performing the procedure call f(u, v) on every pair of vertices u and v joined by a Delaunay edge. Here
f is a procedure supplied as a parameter; u and v are either pointers to vertices or Λ (i.e., NULL), where Λ
denotes the vertex “∞.” As remarked above, edges run between ∞ and all vertices on the convex hull of the
given points. The graph of all edges, including the infinite edges, is planar.
For example, if the vertex at infinity is being ignored, the user can declare

void ins finite (u, v)
Vertex ∗u, ∗v;

{ if (u ∧ v) gb new edge (u, v, 1L); }

Then the procedure call delaunay (g, ins finite) will add all the finite Delaunay edges to the current graph g,
giving them all length 1.
If delaunay is unable to allocate enough storage to do its work, it will set gb trouble code nonzero and

there will be no edges in the triangulation.

⟨The delaunay routine 9 ⟩ ≡
void delaunay (g, f)

Graph ∗g; /∗ vertices in the plane ∗/
void (∗f)(); /∗ procedure that absorbs the triangulated edges ∗/

{ ⟨Local variables for delaunay 26 ⟩;
⟨Find the Delaunay triangulation of g, or return with gb trouble code nonzero if out of memory 34 ⟩;
⟨Call f(u, v) for each Delaunay edge uv 28 ⟩;
gb free (working storage);

}
This code is used in section 4.

10. The procedure passed to delaunay will communicate with plane via global variables called gprob and
inf vertex .

⟨Global variables 10 ⟩ ≡
static unsigned long gprob ; /∗ copy of the prob parameter ∗/
static Vertex ∗inf vertex ; /∗ pointer to the vertex ∞, or Λ ∗/

This code is used in section 4.

11. ⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with
probability prob/65536, otherwise append them with their Euclidean length 11 ⟩ ≡

gprob = prob ;
if (extend) inf vertex = new graph⃗vertices + n;
else inf vertex = Λ;
delaunay (new graph ,new euclid edge);

This code is used in section 5.

6 DELAUNAY TRIANGULATION GB PLANE §12

12. ⟨Other subroutines 12 ⟩ ≡
static void new euclid edge (u, v)

Vertex ∗u, ∗v;
{ register long dx , dy ;

if ((gb next rand () ≫ 15) ≥ gprob) {
if (u) {
if (v) {
dx = u⃗ x coord − v⃗ x coord ;
dy = u⃗ y coord − v⃗ y coord ;
gb new edge (u, v, int sqrt (dx ∗ dx + dy ∗ dy));

} else if (inf vertex) gb new edge (u, inf vertex , INFTY);
} else if (inf vertex) gb new edge (inf vertex , v, INFTY);

}
}

See also sections 20, 21, 40, and 44.

This code is used in section 4.

§13 GB PLANE ARITHMETIC 7

13. Arithmetic. Before we lunge into the world of geometric algorithms, let’s build up some confidence
by polishing off some subroutines that will be needed to ensure correct results. We assume that long integers
are less than 231.
First is a routine to calculate s = ⌊210

√
x+ 1

2⌋, the nearest integer to 210 times the square root of a given
nonnegative integer x. If x > 0, this is the unique integer such that 220x− s ≤ s2 < 220x+ s.

The following routine appears to work by magic, but the mystery goes away when one considers the
invariant relations

m = ⌊22k−21⌋, 0 < y = ⌊220−2kx⌋ − s2 + s ≤ q = 2s.

(Exception: We might actually have y = 0 for a short time when q = 2.)

⟨Subroutines for arithmetic 13 ⟩ ≡
static long int sqrt (x)

long x;
{ register long y, m, q = 2;
long k;

if (x ≤ 0) return 0;
for (k = 25,m = #20000000; x < m; k−−,m ≫= 2) ; /∗ find the range ∗/
if (x ≥ m+m) y = 1;
else y = 0;
do ⟨Decrease k by 1, maintaining the invariant relations between x, y, m, and q 14 ⟩ while (k);
return q ≫ 1;

}
See also sections 15 and 24.

This code is used in section 4.

14. ⟨Decrease k by 1, maintaining the invariant relations between x, y, m, and q 14 ⟩ ≡
{
if (x&m) y += y + 1;
else y += y;
m ≫= 1;
if (x&m) y += y − q + 1;
else y += y − q;
q += q;
if (y > q) y −= q, q += 2;
else if (y ≤ 0) q −= 2, y += q;
m ≫= 1;
k−−;

}
This code is used in section 13.

8 ARITHMETIC GB PLANE §15

15. We are going to need multiple-precision arithmetic in order to calculate certain geometric predicates
properly, but it turns out that we do not need to implement general-purpose subroutines for bignums. It
suffices to have a single special-purpose routine called sign test (x1 , x2 , x3 , y1 , y2 , y3), which computes a
single-precision integer having the same sign as the dot product

x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3

when we have −229 < x1 , x2 , x3 < 229 and 0 ≤ y1 , y2 , y3 < 229.

⟨Subroutines for arithmetic 13 ⟩ +≡
static long sign test (x1 , x2 , x3 , y1 , y2 , y3)

long x1 , x2 , x3 , y1 , y2 , y3 ;
{ long s1 , s2 , s3 ; /∗ signs of individual terms ∗/
long a, b, c; /∗ components of a redundant representation of the dot product ∗/
register long t; /∗ temporary register for swapping ∗/
⟨Determine the signs of the terms 16 ⟩;
⟨ If the answer is obvious, return it without further ado; otherwise, arrange things so that x3 ∗ y3 has

the opposite sign to x1 ∗ y1 + x2 ∗ y2 17 ⟩;
⟨Compute a redundant representation of x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3 18 ⟩;
⟨Return the sign of the redundant representation 19 ⟩;

}

16. ⟨Determine the signs of the terms 16 ⟩ ≡
if (x1 ≡ 0 ∨ y1 ≡ 0) s1 = 0;
else {
if (x1 > 0) s1 = 1;
else x1 = −x1 , s1 = −1;

}
if (x2 ≡ 0 ∨ y2 ≡ 0) s2 = 0;
else {
if (x2 > 0) s2 = 1;
else x2 = −x2 , s2 = −1;

}
if (x3 ≡ 0 ∨ y3 ≡ 0) s3 = 0;
else {
if (x3 > 0) s3 = 1;
else x3 = −x3 , s3 = −1;

}
This code is used in section 15.

§17 GB PLANE ARITHMETIC 9

17. The answer is obvious unless one of the terms is positive and one of the terms is negative.

⟨ If the answer is obvious, return it without further ado; otherwise, arrange things so that x3 ∗ y3 has the
opposite sign to x1 ∗ y1 + x2 ∗ y2 17 ⟩ ≡

if ((s1 ≥ 0 ∧ s2 ≥ 0 ∧ s3 ≥ 0) ∨ (s1 ≤ 0 ∧ s2 ≤ 0 ∧ s3 ≤ 0)) return (s1 + s2 + s3);
if (s3 ≡ 0 ∨ s3 ≡ s1) {
t = s3 ; s3 = s2 ; s2 = t;
t = x3 ; x3 = x2 ; x2 = t;
t = y3 ; y3 = y2 ; y2 = t;

} else if (s3 ≡ s2) {
t = s3 ; s3 = s1 ; s1 = t;
t = x3 ; x3 = x1 ; x1 = t;
t = y3 ; y3 = y1 ; y1 = t;

}
This code is used in section 15.

18. We make use of a redundant representation 228a + 214b + c, which can be computed by brute force.
(Everything is understood to be multiplied by −s3 .)

⟨Compute a redundant representation of x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3 18 ⟩ ≡
{ register long lx , rx , ly , ry ;

lx = x1 /#4000; rx = x1 % #4000; /∗ split off the least significant 14 bits ∗/
ly = y1 /#4000; ry = y1 % #4000;
a = lx ∗ ly ; b = lx ∗ ry + ly ∗ rx ; c = rx ∗ ry ;
lx = x2 /#4000; rx = x2 % #4000;
ly = y2 /#4000; ry = y2 % #4000;
a += lx ∗ ly ; b += lx ∗ ry + ly ∗ rx ; c += rx ∗ ry ;
lx = x3 /#4000; rx = x3 % #4000;
ly = y3 /#4000; ry = y3 % #4000;
a −= lx ∗ ly ; b −= lx ∗ ry + ly ∗ rx ; c −= rx ∗ ry ;

}
This code is used in section 15.

19. Here we use the fact that |c| < 229.

⟨Return the sign of the redundant representation 19 ⟩ ≡
if (a ≡ 0) goto ez ;
if (a < 0) a = −a, b = −b, c = −c, s3 = −s3 ;
while (c < 0) {
a−−; c += #10000000;
if (a ≡ 0) goto ez ;

}
if (b ≥ 0) return −s3 ; /∗ the answer is clear when a > 0 ∧ b ≥ 0 ∧ c ≥ 0 ∗/
b = −b;
a −= b/#4000;
if (a > 0) return −s3 ;
if (a ≤ −2) return s3 ;
return −s3 ∗ ((a ∗ #4000− b % #4000) ∗ #4000+ c);

ez : if (b ≥ #8000) return −s3 ;
if (b ≤ −#8000) return s3 ;
return −s3 ∗ (b ∗ #4000+ c);

This code is used in section 15.

10 DETERMINANTS GB PLANE §20

20. Determinants. The delaunay routine bases all of its decisions on two geometric predicates, which
depend on whether certain determinants are positive or negative.
The first predicate, ccw (u, v, w), is true if and only if the three points (u, v, w) have a counterclockwise

orientation. This means that if we draw the unique circle through those points, and if we travel along that
circle in the counterclockwise direction starting at u, we will encounter v before w.

It turns out that ccw (u, v, w) holds if and only if the determinant∣∣∣∣∣∣
xu yu 1
xv yv 1
xw yw 1

∣∣∣∣∣∣ =
∣∣∣∣xu − xw yu − yw
xv − xw yv − yw

∣∣∣∣
is positive. The evaluation must be exact; if the answer is zero, a special tie-breaking rule must be used
because the three points were collinear. The tie-breaking rule is tricky (and necessarily so, according to the
theory in Axioms and Hulls).

Integer evaluation of that determinant will not cause long integer overflow, because we have assumed that
all x and y coordinates lie between 0 and 214−1, inclusive. In fact, we could go up to 215−1 without risking
overflow; but the limitation to 14 bits will be helpful when we consider a more complicated determinant
below.

⟨Other subroutines 12 ⟩ +≡
static long ccw (u, v, w)

Vertex ∗u, ∗v, ∗w;
{ register long wx = w⃗ x coord , wy = w⃗ y coord ; /∗ xw, yw ∗/
register long det = (u⃗ x coord − wx) ∗ (v⃗ y coord − wy)− (u⃗ y coord − wy) ∗ (v⃗ x coord − wx);
Vertex ∗t;
if (det ≡ 0) {
det = 1;
if (u⃗ z coord > v⃗ z coord) {
t = u; u = v; v = t; det = −det ;

}
if (v⃗ z coord > w⃗ z coord) {

t = v; v = w; w = t; det = −det ;
}
if (u⃗ z coord > v⃗ z coord) {

t = u; u = v; v = t; det = −det ;
}
if (u⃗ x coord > v⃗ x coord ∨ (u⃗ x coord ≡ v⃗ x coord ∧

(u⃗ y coord > v⃗ y coord ∨ (u⃗ y coord ≡ v⃗ y coord ∧
(w⃗ x coord > u⃗ x coord ∨ (w⃗ x coord ≡ u⃗ x coord ∧ w⃗ y coord ≥ u⃗ y coord)))))) det = −det ;

}
return (det > 0);

}

§21 GB PLANE DETERMINANTS 11

21. The other geometric predicate, incircle (t, u, v, w), is true if and only if point t lies outside the circle
passing through u, v, and w, assuming that ccw (u, v, w) holds. This predicate makes us work harder, because
it is equivalent to the sign of a 4× 4 determinant that requires twice as much precision:∣∣∣∣∣∣∣

xt yt x2
t + y2t 1

xu yu x2
u + y2u 1

xv yv x2
v + y2v 1

xw yw x2
w + y2w 1

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣
xt − xw yt − yw (xt − xw)

2 + (yt − yw)
2

xu − xw yu − yw (xu − xw)
2 + (yu − yw)

2

xv − xw yv − yw (xv − xw)
2 + (yv − yw)

2

∣∣∣∣∣∣ .
The sign can, however, be deduced by the sign test subroutine we had the foresight to provide earlier.

⟨Other subroutines 12 ⟩ +≡
static long incircle (t, u, v, w)

Vertex ∗t, ∗u, ∗v, ∗w;
{ register long wx = w⃗ x coord , wy = w⃗ y coord ; /∗ xw, yw ∗/
long tx = t⃗ x coord − wx , ty = t⃗ y coord − wy ; /∗ xt − xw, yt − yw ∗/
long ux = u⃗ x coord − wx , uy = u⃗ y coord − wy ; /∗ xu − xw, yu − yw ∗/
long vx = v⃗ x coord − wx , vy = v⃗ y coord − wy ; /∗ xv − xw, yv − yw ∗/
register long det = sign test (tx ∗ uy − ty ∗ ux , ux ∗ vy − uy ∗ vx , vx ∗ ty − vy ∗ tx ,

vx ∗ vx + vy ∗ vy , tx ∗ tx + ty ∗ ty , ux ∗ ux + uy ∗ uy);
Vertex ∗s;
if (det ≡ 0) {
⟨Sort (t, u, v, w) by ID number 22 ⟩;
⟨Remove incircle degeneracy 23 ⟩;

}
return (det > 0);

}

22. ⟨Sort (t, u, v, w) by ID number 22 ⟩ ≡
det = 1;
if (t⃗ z coord > u⃗ z coord) {
s = t; t = u; u = s; det = −det ;

}
if (v⃗ z coord > w⃗ z coord) {
s = v; v = w; w = s; det = −det ;

}
if (t⃗ z coord > v⃗ z coord) {
s = t; t = v; v = s; det = −det ;

}
if (u⃗ z coord > w⃗ z coord) {
s = u; u = w; w = s; det = −det ;

}
if (u⃗ z coord > v⃗ z coord) {
s = u; u = v; v = s; det = −det ;

}
This code is used in section 21.

12 DETERMINANTS GB PLANE §23

23. By slightly perturbing the points, we can always make them nondegenerate, although the details are
complicated. A sequence of 12 steps, involving up to four auxiliary functions

ff (t, u, v, w) =

∣∣∣∣ xt − xv (xt − xw)
2 + (yt − yw)

2 − (xv − xw)
2 − (yv − yw)

2

xu − xv (xu − xw)
2 + (yu − yw)

2 − (xv − xw)
2 − (yv − yw)

2

∣∣∣∣ ,
gg (t, u, v, w) =

∣∣∣∣ yt − yv (xt − xw)
2 + (yt − yw)

2 − (xv − xw)
2 − (yv − yw)

2

yu − yv (xu − xw)
2 + (yu − yw)

2 − (xv − xw)
2 − (yv − yw)

2

∣∣∣∣ ,
hh (t, u, v, w) = (xu − xt)(yv − yw) ,

jj (t, u, v, w) = (xu − xv)
2 + (yu − yw)

2 − (xt − xv)
2 − (yt − yw)

2 ,

does the trick, as explained in Axioms and Hulls.

⟨Remove incircle degeneracy 23 ⟩ ≡
{ long dd ;

if ((dd = ff (t, u, v, w)) < 0 ∨ (dd ≡ 0 ∧
((dd = gg (t, u, v, w)) < 0 ∨ (dd ≡ 0 ∧
((dd = ff (u, t, w, v)) < 0 ∨ (dd ≡ 0 ∧
((dd = gg (u, t, w, v)) < 0 ∨ (dd ≡ 0 ∧
((dd = ff (v, w, t, u)) < 0 ∨ (dd ≡ 0 ∧
((dd = gg (v, w, t, u)) < 0 ∨ (dd ≡ 0 ∧
((dd = hh (t, u, v, w)) < 0 ∨ (dd ≡ 0 ∧
((dd = jj (t, u, v, w)) < 0 ∨ (dd ≡ 0 ∧
((dd = hh (v, t, u, w)) < 0 ∨ (dd ≡ 0 ∧
((dd = jj (v, t, u, w)) < 0 ∨ (dd ≡ 0 ∧ jj (t, w, u, v) < 0)))))))))))))))))))) det = −det ;

}
This code is used in section 21.

§24 GB PLANE DETERMINANTS 13

24. ⟨Subroutines for arithmetic 13 ⟩ +≡
static long ff (t, u, v, w)

Vertex ∗t, ∗u, ∗v, ∗w;
{ register long wx = w⃗ x coord , wy = w⃗ y coord ; /∗ xw, yw ∗/
long tx = t⃗ x coord − wx , ty = t⃗ y coord − wy ; /∗ xt − xw, yt − yw ∗/
long ux = u⃗ x coord − wx , uy = u⃗ y coord − wy ; /∗ xu − xw, yu − yw ∗/
long vx = v⃗ x coord − wx , vy = v⃗ y coord − wy ; /∗ xv − xw, yv − yw ∗/
return sign test (ux − tx , vx − ux , tx − vx , vx ∗ vx + vy ∗ vy , tx ∗ tx + ty ∗ ty , ux ∗ ux + uy ∗ uy);

}
static long gg (t, u, v, w)

Vertex ∗t, ∗u, ∗v, ∗w;
{ register long wx = w⃗ x coord , wy = w⃗ y coord ; /∗ xw, yw ∗/
long tx = t⃗ x coord − wx , ty = t⃗ y coord − wy ; /∗ xt − xw, yt − yw ∗/
long ux = u⃗ x coord − wx , uy = u⃗ y coord − wy ; /∗ xu − xw, yu − yw ∗/
long vx = v⃗ x coord − wx , vy = v⃗ y coord − wy ; /∗ xv − xw, yv − yw ∗/
return sign test (uy − ty , vy − uy , ty − vy , vx ∗ vx + vy ∗ vy , tx ∗ tx + ty ∗ ty , ux ∗ ux + uy ∗ uy);

}
static long hh (t, u, v, w)

Vertex ∗t, ∗u, ∗v, ∗w;
{
return (u⃗ x coord − t⃗ x coord) ∗ (v⃗ y coord − w⃗ y coord);

}
static long jj (t, u, v, w)

Vertex ∗t, ∗u, ∗v, ∗w;
{ register long vx = v⃗ x coord , wy = w⃗ y coord ;

return (u⃗ x coord − vx) ∗ (u⃗ x coord − vx) + (u⃗ y coord − wy) ∗ (u⃗ y coord − wy)
− (t⃗ x coord − vx) ∗ (t⃗ x coord − vx)− (t⃗ y coord − wy) ∗ (t⃗ y coord − wy);

}

14 DELAUNAY DATA STRUCTURES GB PLANE §25

25. Delaunay data structures. Now we have the primitive predicates we need, and we can get on
with the geometric aspects of delaunay . As mentioned above, each vertex is represented by two coordinates
and an ID number, stored in the utility fields x coord , y coord , and z coord .
Each edge of the current triangulation is represented by two arcs pointing in opposite directions; the two

arcs are called mates. Each arc conceptually has a triangle on its left and a mate on its right.
An arc record differs from an Arc; it has three fields:

vert is the vertex this arc leads to, or Λ if that vertex is ∞;

next is the next arc having the same triangle at the left;

inst is the branch node that points to the triangle at the left, as explained below.

If p points to an arc, then p⃗ next⃗ next⃗ next ≡ p, because a triangle is bounded by three arcs. We also have
p⃗ next⃗ inst ≡ p⃗ inst , for all arcs p.

⟨Type declarations 25 ⟩ ≡
typedef struct a struct {
Vertex ∗vert ; /∗ v, if this arc goes from u to v ∗/
struct a struct ∗next ; /∗ the arc from v that shares a triangle with this one ∗/
struct n struct ∗inst ; /∗ instruction to change when the triangle is modified ∗/

} arc;

See also section 29.

This code is used in section 4.

26. Storage is allocated in such a way that, if p and q point respectively to an arc and its mate, then
p + q = &arc block [0] + &arc block [m − 1], where m is the total number of arc records allocated in the
arc block array. This convention saves us one pointer field in each arc.
When setting q to the mate of p, we need to do the calculation cautiously using an auxiliary register,

because the constant &arc block [0] + &arc block [m − 1] might be too large to evaluate without integer
overflow on some systems.

#define mate (a, b)
{ /∗ given a, set b to its mate ∗/
reg = max arc − (siz t) a;
b = (arc ∗)(reg +min arc);

}
⟨Local variables for delaunay 26 ⟩ ≡
register siz t reg ; /∗ used while computing mates ∗/
siz t min arc , max arc ; /∗ &arc block [0], &arc block [m− 1] ∗/
arc ∗next arc ; /∗ the first arc record that hasn’t yet been used ∗/

See also sections 30 and 32.

This code is used in section 9.

27. ⟨ Initialize the array of arcs 27 ⟩ ≡
next arc = gb typed alloc(6 ∗ g⃗ n− 6,arc,working storage);
if (next arc ≡ Λ) return; /∗ gb trouble code is nonzero ∗/
min arc = (siz t) next arc ;
max arc = (siz t)(next arc + (6 ∗ g⃗ n− 7));

This code is used in section 31.

28. ⟨Call f(u, v) for each Delaunay edge uv 28 ⟩ ≡
a = (arc ∗) min arc ;
b = (arc ∗) max arc ;
for (; a < next arc ; a++, b−−) (∗f)(a⃗ vert , b⃗ vert);

This code is used in section 9.

§29 GB PLANE DELAUNAY DATA STRUCTURES 15

29. The last and probably most crucial component of the data structure is the collection of branch nodes,
which will be linked together into a binary tree. Given a new vertex w, we will ascertain what triangle it
belongs to by starting at the root of this tree and executing a sequence of instructions, each of which has the
form ‘if w lies to the right of the straight line from u to v then go to α else go to β’, where α and β are nodes
that continue the search. This process continues until we reach a terminal node, which says ‘congratulations,
you’re done, w is in triangle such-and-such’. The terminal node points to one of the three arcs bounding
that triangle. If a vertex of the triangle is ∞, the terminal node points to the arc whose vert pointer is Λ.

⟨Type declarations 25 ⟩ +≡
typedef struct n struct {
Vertex ∗u; /∗ first vertex, or Λ if this is a terminal node ∗/
Vertex ∗v; /∗ second vertex, or pointer to the triangle corresponding to a terminal node ∗/
struct n struct ∗l; /∗ go here if w lies to the left of uv ∗/
struct n struct ∗r; /∗ go here if w lies to the right of uv ∗/

} node;

30. The search tree just described is actually a dag (a directed acyclic graph), because it has overlapping
subtrees. As the algorithm proceeds, the dag gets bigger and bigger, since the number of triangles keeps
growing. Instructions are never deleted; we just extend the dag by substituting new branches for nodes that
once were terminal.
The expected number of nodes in this dag is O(n) when there are n vertices, if we input the vertices in

random order. But it can be as high as order n2 in the worst case. So our program will allocate blocks of
nodes dynamically instead of assuming a maximum size.

#define nodes per block 127 /∗ on most computers we want it ≡ 15 (mod 16) ∗/
#define new node (x)

if (next node ≡ max node) {
x = gb typed alloc(nodes per block ,node,working storage);
if (x ≡ Λ) {
gb free (working storage); /∗ release delaunay ’s auxiliary memory ∗/
return; /∗ gb trouble code is nonzero ∗/

}
next node = x+ 1;
max node = x+ nodes per block ;

} else x = next node++;

#define terminal node (x, p)
{ new node (x); /∗ allocate a new node ∗/
x⃗ v = (Vertex ∗)(p); /∗ make it point to a given arc from the triangle ∗/

} /∗ note that x⃗ u ≡ Λ, representing a terminal node ∗/
⟨Local variables for delaunay 26 ⟩ +≡
node ∗next node ; /∗ the first yet-unused node slot in the current block of nodes ∗/
node ∗max node ; /∗ address of nonexistent node following the current block of nodes ∗/
node root node ; /∗ start here to locate a vertex in its triangle ∗/
Area working storage ; /∗ where delaunay builds its triangulation ∗/

16 DELAUNAY DATA STRUCTURES GB PLANE §31

31. The algorithm begins with a trivial triangulation that contains only the first two vertices, together
with two “triangles” extending to infinity at their left and right.

⟨ Initialize the data structures 31 ⟩ ≡
next node = max node = Λ;
init area (working storage);
⟨ Initialize the array of arcs 27 ⟩;
u = g⃗ vertices ;
v = u+ 1;
⟨Make two “triangles” for u, v, and ∞ 33 ⟩;

This code is used in section 34.

32. We’ll need a bunch of local variables to do elementary operations on data structures.

⟨Local variables for delaunay 26 ⟩ +≡
Vertex ∗p, ∗q, ∗r, ∗s, ∗t, ∗tp , ∗tpp , ∗u, ∗v;
arc ∗a, ∗aa , ∗b, ∗c, ∗d, ∗e;
node ∗x, ∗y, ∗yp , ∗ypp ;

33. ⟨Make two “triangles” for u, v, and ∞ 33 ⟩ ≡
root node .u = u;
root node .v = v;
a = next arc ;
terminal node (x, a+ 1);
root node .l = x;
a⃗ vert = v; a⃗ next = a+ 1; a⃗ inst = x;
(a+ 1)⃗ next = a+ 2; (a+ 1)⃗ inst = x; /∗ (a+ 1)⃗ vert = Λ, representing ∞ ∗/
(a+ 2)⃗ vert = u; (a+ 2)⃗ next = a; (a+ 2)⃗ inst = x;
mate (a, b);
terminal node (x, b− 2);
root node .r = x;
b⃗ vert = u; b⃗ next = b− 2; b⃗ inst = x;
(b− 2)⃗ next = b− 1; (b− 2)⃗ inst = x; /∗ (b− 2)⃗ vert = Λ, representing ∞ ∗/
(b− 1)⃗ vert = v; (b− 1)⃗ next = b; (b− 1)⃗ inst = x;
next arc += 3;

This code is used in section 31.

§34 GB PLANE DELAUNAY UPDATING 17

34. Delaunay updating. The main loop of the algorithm updates the data structure incrementally by
adding one new vertex at a time. The new vertex will always be connected by an edge (i.e., by two arcs)
to each of the vertices of the triangle that previously enclosed it. It might also deserve to be connected to
other nearby vertices.

⟨Find the Delaunay triangulation of g, or return with gb trouble code nonzero if out of memory 34 ⟩ ≡
if (g⃗ n < 2) return; /∗ no edges unless there are at least 2 vertices ∗/
⟨ Initialize the data structures 31 ⟩;
for (p = g⃗ vertices + 2; p < g⃗ vertices + g⃗ n; p++) {
⟨Find an arc a on the boundary of the triangle containing p 35 ⟩;
⟨Divide the triangle left of a into three triangles surrounding p 36 ⟩;
⟨Explore the triangles surrounding p, “flipping” their neighbors until all triangles that should touch p

are found 39 ⟩;
}

This code is used in section 9.

35. We have set up the branch nodes so that they solve the triangle location problem.

⟨Find an arc a on the boundary of the triangle containing p 35 ⟩ ≡
x = &root node ;
do {
if (ccw (x⃗ u, x⃗ v, p)) x = x⃗ l;
else x = x⃗ r;

} while (x⃗ u);
a = (arc ∗) x⃗ v; /∗ terminal node points to the arc we want ∗/

This code is used in section 34.

18 DELAUNAY UPDATING GB PLANE §36

36. Subdividing a triangle is an easy exercise in data structure manipulation, except that we must do
something special when one of the vertices is infinite. Let’s look carefully at what needs to be done.
Suppose the triangle containing p has the vertices q, r, and s in counterclockwise order. Let x be the

terminal node that points to the triangle ∆qrs. We want to change x so that we will be able to locate a
future point of ∆qrs within either ∆pqr, ∆prs, or ∆psq.
If q, r, and s are finite, we will change x and add five new nodes as follows:

x: if left of rp, go to x′′, else go to x′;
x′: if left of sp, go to y, else go to y′;
x′′: if left of qp, go to y′, else go to y′′;
y: you’re in ∆prs;
y′: you’re in ∆psq;
y′′: you’re in ∆pqr.

But if, say, q = ∞, such instructions make no sense, because there are lines in all directions that run from
∞ to any point. In such a case we use “wedges” instead of triangles, as explained below.
At the beginning of the following code, we have x ≡ a⃗ inst .

⟨Divide the triangle left of a into three triangles surrounding p 36 ⟩ ≡
b = a⃗ next ; c = b⃗ next ;
q = a⃗ vert ; r = b⃗ vert ; s = c⃗ vert ;
⟨Create new terminal nodes y, yp , ypp , and new arcs pointing to them 37 ⟩;
if (q ≡ Λ) ⟨Compile instructions to update convex hull 38 ⟩
else { register node ∗xp ;
x⃗ u = r; x⃗ v = p;
new node (xp);
xp⃗ u = q; xp⃗ v = p; xp⃗ l = yp ; xp⃗ r = ypp ; /∗ instruction x′′ above ∗/
x⃗ l = xp ;
new node (xp);
xp⃗ u = s; xp⃗ v = p; xp⃗ l = y; xp⃗ r = yp ; /∗ instruction x′ above ∗/
x⃗ r = xp ;

}
This code is used in section 34.

37. The only subtle point here is that q = a⃗ vert might be Λ. A terminal node must point to the proper
arc of an infinite triangle.

⟨Create new terminal nodes y, yp , ypp , and new arcs pointing to them 37 ⟩ ≡
terminal node (yp , a); terminal node (ypp ,next arc); terminal node (y, c);
c⃗ inst = y; a⃗ inst = yp ; b⃗ inst = ypp ;
mate (next arc , e);
a⃗ next = e; b⃗ next = e− 1; c⃗ next = e− 2;
next arc⃗ vert = q; next arc⃗ next = b; next arc⃗ inst = ypp ;
(next arc + 1)⃗ vert = r; (next arc + 1)⃗ next = c; (next arc + 1)⃗ inst = y;
(next arc + 2)⃗ vert = s; (next arc + 2)⃗ next = a; (next arc + 2)⃗ inst = yp ;
e⃗ vert = (e− 1)⃗ vert = (e− 2)⃗ vert = p;
e⃗ next = next arc + 2; (e− 1)⃗ next = next arc ; (e− 2)⃗ next = next arc + 1;
e⃗ inst = yp ; (e− 1)⃗ inst = ypp ; (e− 2)⃗ inst = y;
next arc += 3;

This code is used in section 36.

§38 GB PLANE DELAUNAY UPDATING 19

38. Outside of the current convex hull, we have “wedges” instead of triangles. Wedges are exterior angles
whose points lie outside an edge rs of the convex hull, but not outside the next edge on the other side of
point r. When a new point lies in such a wedge, we have to see if it also lies outside the edges st, tu, etc.,
in the clockwise direction, in which case the convex hull loses points s, t, etc., and we must update the new
wedges accordingly.
This was the hardest part of the program to prove correct; a complete proof can be found in Axioms and

Hulls.

⟨Compile instructions to update convex hull 38 ⟩ ≡
{ register node ∗xp ;
x⃗ u = r; x⃗ v = p; x⃗ l = ypp ;
new node (xp);
xp⃗ u = s; xp⃗ v = p; xp⃗ l = y; xp⃗ r = yp ;
x⃗ r = xp ;
mate (a, aa); d = aa⃗next ; t = d⃗ vert ;
while (t ̸= r ∧ (ccw (p, s, t))) { register node ∗xpp ;

terminal node (xpp , d);
xp⃗ r = d⃗ inst ;
xp = d⃗ inst ;
xp⃗ u = t; xp⃗ v = p; xp⃗ l = xpp ; xp⃗ r = yp ;
flip(a, aa , d, s,Λ, t, p, xpp , yp);
a = aa⃗next ; mate (a, aa); d = aa⃗next ;
s = t; t = d⃗ vert ;
yp⃗ v = (Vertex ∗) a;

}
terminal node (xp , d⃗ next);
x = d⃗ inst ; x⃗ u = s; x⃗ v = p; x⃗ l = xp ; x⃗ r = yp ;
d⃗ inst = xp ; d⃗ next⃗ inst = xp ; d⃗ next⃗ next⃗ inst = xp ;
r = s; /∗ this value of r shortens the exploration step that follows ∗/

}
This code is used in section 36.

20 DELAUNAY UPDATING GB PLANE §39

39. The updating process finishes by walking around the triangles that surround p, making sure that none
of them are adjacent to triangles containing p in their circumcircle. (Such triangles are no longer in the
Delaunay triangulation, by definition.)

⟨Explore the triangles surrounding p, “flipping” their neighbors until all triangles that should touch p are
found 39 ⟩ ≡

while (1) {
mate (c, d); e = d⃗ next ;
t = d⃗ vert ; tp = c⃗ vert ; tpp = e⃗ vert ;
if (tpp ∧ incircle (tpp , tp , t, p)) { /∗ triangle tt′′t′ no longer Delaunay ∗/
register node ∗xp , ∗xpp ;
terminal node (xp , e);
terminal node (xpp , d);
x = c⃗ inst ; x⃗ u = tpp ; x⃗ v = p; x⃗ l = xp ; x⃗ r = xpp ;
x = d⃗ inst ; x⃗ u = tpp ; x⃗ v = p; x⃗ l = xp ; x⃗ r = xpp ;
flip(c, d, e, t, tp , tpp , p, xp , xpp);
c = e;

}
else if (tp ≡ r) break;
else {
mate (c⃗ next , aa);
c = aa⃗next ;

}
}

This code is used in section 34.

40. Here d is the mate of c, e = d⃗ next , t = d⃗ vert , tp = c⃗ vert , and tpp = e⃗ vert . The triangles
∆tt′p and ∆t′tt′′ to the left and right of arc c are being replaced in the current triangulation by ∆ptt′′ and
∆t′′t′p, corresponding to terminal nodes xp and xpp . (The values of t and tp are not actually used, so some
optimization is possible.)

⟨Other subroutines 12 ⟩ +≡
static void flip(c, d, e, t, tp , tpp , p, xp , xpp)

arc ∗c, ∗d, ∗e;
Vertex ∗t, ∗tp , ∗tpp , ∗p;
node ∗xp , ∗xpp ;

{ register arc ∗ep = e⃗ next , ∗cp = c⃗ next , ∗cpp = cp⃗ next ;

e⃗ next = c; c⃗ next = cpp ; cpp⃗ next = e;
e⃗ inst = c⃗ inst = cpp⃗ inst = xp ;
c⃗ vert = p;
d⃗ next = ep ; ep⃗ next = cp ; cp⃗ next = d;
d⃗ inst = ep⃗ inst = cp⃗ inst = xpp ;
d⃗ vert = tpp ;

}

§41 GB PLANE USE OF MILEAGE DATA 21

41. Use of mileage data. The delaunay routine is now complete, and the only missing piece of code
is the promised routine that generates planar graphs based on data from the real world.
The subroutine call plane miles (n,north weight ,west weight , pop weight , extend , prob , seed) will construct

a planar graph with min(128, n) vertices, where the vertices are exactly the same as the cities produced
by the subroutine call miles (n,north weight ,west weight , pop weight , 0, 0, seed). (As explained in module
GB MILES, the weight parameters north weight , west weight , and pop weight are used to rank the cities by
location and/or population.) The edges of the new graph are obtained by first constructing the Delaunay
triangulation of those cities, based on a simple projection onto the plane using their latitude and longitude,
then discarding each Delaunay edge with probability prob/65536. The length of each surviving edge is the
same as the mileage between cities that would appear in the complete graph produced by miles .

If extend ̸= 0, an additional vertex representing ∞ is also included. The Delaunay triangulation includes
edges of length INFTY connecting this vertex with all cities on the convex hull; these edges, like the others, are
subject to being discarded with probability prob/65536. (See the description of plane for further comments
about using prob to control the sparseness of the graph.)
The weight parameters must satisfy

|north weight | ≤ 100,000, |west weight | ≤ 100,000, |pop weight | ≤ 100.

Vertices of the graph will appear in order of decreasing weight. The seed parameter defines the pseudo-
random numbers used wherever a “random” choice between equal-weight vertices needs to be made, or when
deciding whether to discard a Delaunay edge.

⟨The plane miles routine 41 ⟩ ≡
Graph ∗plane miles (n,north weight ,west weight , pop weight , extend , prob , seed)

unsigned long n; /∗ number of vertices desired ∗/
long north weight ; /∗ coefficient of latitude in the weight function ∗/
long west weight ; /∗ coefficient of longitude in the weight function ∗/
long pop weight ; /∗ coefficient of population in the weight function ∗/
unsigned long extend ; /∗ should a point at infinity be included? ∗/
unsigned long prob ; /∗ probability of rejecting a Delaunay edge ∗/
long seed ; /∗ random number seed ∗/

{ Graph ∗new graph ; /∗ the graph constructed by plane miles ∗/
⟨Use miles to set up the vertices of a graph 42 ⟩;
⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with

probability prob/65536, otherwise append them with the road length in miles 43 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
gb free (new graph⃗aux data); /∗ recycle special memory used by miles ∗/
if (extend) new graph⃗n++; /∗ make the “infinite” vertex legitimate ∗/
return new graph ;

}
This code is used in section 4.

22 USE OF MILEAGE DATA GB PLANE §42

42. By setting the max distance parameter to 1, we cause miles to produce a graph having the desired
vertices but no edges. The vertices of this graph will have appropriate coordinate fields x coord , y coord ,
and z coord .

⟨Use miles to set up the vertices of a graph 42 ⟩ ≡
if (extend) extra n++; /∗ allocate one more vertex than usual ∗/
if (n ≡ 0 ∨ n > MAX_N) n = MAX_N; /∗ compute true number of vertices ∗/
new graph = miles (n,north weight ,west weight , pop weight , 1L, 0L, seed);
if (new graph ≡ Λ) return Λ; /∗ panic code has been set by miles ∗/
sprintf (new graph⃗ id , "plane_miles(%lu,%ld,%ld,%ld,%lu,%lu,%ld)", n,north weight ,west weight ,

pop weight , extend , prob , seed);
if (extend) extra n−−; /∗ restore extra n to its previous value ∗/

This code is used in section 41.

43. ⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with
probability prob/65536, otherwise append them with the road length in miles 43 ⟩ ≡

gprob = prob ;
if (extend) {
inf vertex = new graph⃗vertices + new graph⃗n;
inf vertex⃗name = gb save string ("INF");
inf vertex⃗x coord = inf vertex⃗y coord = inf vertex⃗z coord = −1;

} else inf vertex = Λ;
delaunay (new graph ,new mile edge);

This code is used in section 41.

44. The mileages will all have been negated by miles , so we make them positive again.

⟨Other subroutines 12 ⟩ +≡
static void new mile edge (u, v)

Vertex ∗u, ∗v;
{
if ((gb next rand () ≫ 15) ≥ gprob) {

if (u) {
if (v) gb new edge (u, v,−miles distance (u, v));
else if (inf vertex) gb new edge (u, inf vertex , INFTY);

} else if (inf vertex) gb new edge (inf vertex , v, INFTY);
}

}

§45 GB PLANE INDEX 23

45. Index. As usual, we close with an index that shows where the identifiers of gb plane are defined and
used.

a: 15, 32.
a struct: 25.
aa : 32, 38, 39.
alloc fault : 5, 41.
Arc: 25.
arc: 25, 26, 27, 28, 32, 35, 40.
arc block : 26.
Area: 30.
Aurenhammer, Franz: 8.
aux data : 41.
Axioms and Hulls: 8.
b: 15, 32.
bad specs : 5.
c: 15, 32, 40.
ccw : 20, 21, 35, 38.
cp : 40.
cpp : 40.
d: 32, 40.
dd : 23.
delaunay : 1, 6, 9, 10, 11, 20, 25, 30, 41, 43.
Delaunay [Delone], Boris Nikolaevich: 8.
det : 20, 21, 22, 23.
dx : 12.
dy : 12.
e: 32, 40.
ep : 40.
extend : 2, 5, 6, 11, 41, 42, 43.
extra n : 6, 42.
ez : 19.
f : 9.
ff : 23, 24.
flip : 38, 39, 40.
g: 9.
gb free : 9, 30, 41.
gb init rand : 5.
gb new edge : 9, 12, 44.
gb new graph : 6.
gb next rand : 6, 12, 44.
gb recycle : 5, 41.
gb save string : 6, 43.
gb trouble code : 3, 5, 9, 27, 30, 41.
gb typed alloc : 27, 30.
gb unif rand : 6.
gg : 23, 24.
gprob : 10, 11, 12, 43, 44.
Graph: 1, 5, 9, 41.
hh : 23, 24.
id : 6, 42.
incircle : 21, 39.
index no : 6.

inf vertex : 10, 11, 12, 43, 44.
INFTY: 2, 12, 41, 44.
init area : 31.
ins finite : 9.
inst : 25, 33, 36, 37, 38, 39, 40.
int sqrt : 12, 13.
jj : 23, 24.
k: 5, 13.
l: 29.
lx : 18.
ly : 18.
m: 13.
mate : 26, 33, 37, 38, 39.
max arc : 26, 27, 28.
max distance : 42.
MAX_N: 42.
max node : 30, 31.
miles : 41, 42, 44.
miles distance : 44.
min arc : 26, 27, 28.
n: 5, 41.
n struct: 25, 29.
name : 6, 43.
new euclid edge : 11, 12.
new graph : 5, 6, 11, 41, 42, 43.
new mile edge : 43, 44.
new node : 30, 36, 38.
next : 25, 33, 36, 37, 38, 39, 40.
next arc : 26, 27, 28, 33, 37.
next node : 30, 31.
no room : 6.
node: 29, 30, 32, 36, 38, 39, 40.
nodes per block : 30.
north weight : 41, 42.
p: 32, 40.
p miles : 1.
panic : 3, 5, 6, 41.
panic code : 3, 42.
plane : 1, 2, 3, 5, 10, 41.
plane miles : 1, 41.
pointer hacks: 26.
pop weight : 41, 42.
prob : 2, 5, 6, 10, 11, 41, 42, 43.
q: 13, 32.
r: 29, 32.
reg : 26.
root node : 30, 33, 35.
rx : 18.
ry : 18.
s: 21, 32.

24 INDEX GB PLANE §45

seed : 2, 5, 6, 41, 42.
sign test : 15, 21, 24.
siz t: 26, 27.
sprintf : 6, 42.
str buf : 4, 6.
strcpy : 6.
s1 : 15, 16, 17.
s2 : 15, 16, 17.
s3 : 15, 16, 17, 18, 19.
t: 15, 20, 21, 24, 32, 40.
terminal node : 30, 33, 37, 38, 39.
tp : 32, 39, 40.
tpp : 32, 39, 40.
tx : 21, 24.
ty : 21, 24.
u: 9, 12, 20, 21, 24, 29, 32, 44.
util types : 6.
ux : 21, 24.
uy : 21, 24.
v: 5, 9, 12, 20, 21, 24, 29, 32, 44.
vert : 25, 28, 29, 33, 36, 37, 38, 39, 40.
Vertex: 5, 9, 10, 12, 20, 21, 24, 25, 29, 30,

32, 38, 40, 44.
vertices : 6, 11, 31, 34, 43.
very bad specs : 5.
vx : 21, 24.
vy : 21, 24.
w: 20, 21, 24.
west weight : 41, 42.
working storage : 9, 27, 30, 31.
wx : 20, 21, 24.
wy : 20, 21, 24.
x: 13, 32.
x coord : 6, 7, 9, 12, 20, 21, 24, 25, 42, 43.
x range : 2, 5, 6.
xp : 36, 38, 39, 40.
xpp : 38, 39, 40.
x1 : 15, 16, 17, 18.
x2 : 15, 16, 17, 18.
x3 : 15, 16, 17, 18.
y: 13, 32.
y coord : 6, 7, 9, 12, 20, 21, 24, 25, 42, 43.
y range : 2, 5, 6.
yp : 32, 36, 37, 38.
ypp : 32, 36, 37, 38.
y1 : 15, 16, 17, 18.
y2 : 15, 16, 17, 18.
y3 : 15, 16, 17, 18.
z coord : 6, 7, 9, 20, 22, 25, 42, 43.

GB PLANE NAMES OF THE SECTIONS 25

⟨Call f(u, v) for each Delaunay edge uv 28 ⟩ Used in section 9.

⟨Compile instructions to update convex hull 38 ⟩ Used in section 36.

⟨Compute a redundant representation of x1 ∗ y1 + x2 ∗ y2 + x3 ∗ y3 18 ⟩ Used in section 15.

⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with probability
prob/65536, otherwise append them with the road length in miles 43 ⟩ Used in section 41.

⟨Compute the Delaunay triangulation and run through the Delaunay edges; reject them with probability
prob/65536, otherwise append them with their Euclidean length 11 ⟩ Used in section 5.

⟨Create new terminal nodes y, yp , ypp , and new arcs pointing to them 37 ⟩ Used in section 36.

⟨Decrease k by 1, maintaining the invariant relations between x, y, m, and q 14 ⟩ Used in section 13.

⟨Determine the signs of the terms 16 ⟩ Used in section 15.

⟨Divide the triangle left of a into three triangles surrounding p 36 ⟩ Used in section 34.

⟨Explore the triangles surrounding p, “flipping” their neighbors until all triangles that should touch p are
found 39 ⟩ Used in section 34.

⟨Find an arc a on the boundary of the triangle containing p 35 ⟩ Used in section 34.

⟨Find the Delaunay triangulation of g, or return with gb trouble code nonzero if out of memory 34 ⟩ Used

in section 9.

⟨Global variables 10 ⟩ Used in section 4.

⟨ If the answer is obvious, return it without further ado; otherwise, arrange things so that x3 ∗ y3 has the
opposite sign to x1 ∗ y1 + x2 ∗ y2 17 ⟩ Used in section 15.

⟨ Initialize the array of arcs 27 ⟩ Used in section 31.

⟨ Initialize the data structures 31 ⟩ Used in section 34.

⟨Local variables for delaunay 26, 30, 32 ⟩ Used in section 9.

⟨Make two “triangles” for u, v, and ∞ 33 ⟩ Used in section 31.

⟨Other subroutines 12, 20, 21, 40, 44 ⟩ Used in section 4.

⟨Remove incircle degeneracy 23 ⟩ Used in section 21.

⟨Return the sign of the redundant representation 19 ⟩ Used in section 15.

⟨Set up a graph with n uniformly distributed vertices 6 ⟩ Used in section 5.

⟨Sort (t, u, v, w) by ID number 22 ⟩ Used in section 21.

⟨Subroutines for arithmetic 13, 15, 24 ⟩ Used in section 4.

⟨The delaunay routine 9 ⟩ Used in section 4.

⟨The plane miles routine 41 ⟩ Used in section 4.

⟨The plane routine 5 ⟩ Used in section 4.

⟨Type declarations 25, 29 ⟩ Used in section 4.

⟨Use miles to set up the vertices of a graph 42 ⟩ Used in section 41.

⟨ gb_plane.h 1, 2, 7 ⟩

May 19, 2018 at 02:29

GB PLANE
Section Page

Introduction . 1 1
Delaunay triangulation . 8 4
Arithmetic . 13 7
Determinants . 20 10
Delaunay data structures . 25 14
Delaunay updating . 34 17
Use of mileage data . 41 21
Index . 45 23

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

