
§1 MILES SPAN MINIMUM SPANNING TREES 1

Important: Before reading MILES SPAN, please read or at least skim the program for GB MILES.

1. Minimum spanning trees. A classic paper by R. L. Graham and Pavol Hell about the history of
algorithms to find the minimum-length spanning tree of a graph [Annals of the History of Computing 7
(1985), 43–57] describes three main approaches to that problem. Algorithm 1, “two nearest fragments,”
repeatedly adds a shortest edge that joins two hitherto unconnected fragments of the graph; this algorithm
was first published by J. B. Kruskal in 1956. Algorithm 2, “nearest neighbor,” repeatedly adds a shortest
edge that joins a particular fragment to a vertex not in that fragment; this algorithm was first published
by V. Jarńık in 1930. Algorithm 3, “all nearest fragments,” repeatedly adds to each existing fragment the
shortest edge that joins it to another fragment; this method, seemingly the most sophisticated in concept,
also turns out to be the oldest, being first published by Otakar Bor̊uvka in 1926.
The present program contains simple implementations of all three approaches, in an attempt to make

practical comparisons of how they behave on “realistic” data. One of the main goals of this program is to
demonstrate a simple way to make machine-independent comparisons of programs written in C, by counting
memory references or “mems.” In other words, this program is intended to be read, not just performed.
The author believes that mem counting sheds considerable light on the problem of determining the relative

efficiency of competing algorithms for practical problems. He hopes other researchers will enjoy rising to the
challenge of devising algorithms that find minimum spanning trees in significantly fewer mem units than the
algorithms presented here, on problems of the size considered here.
Indeed, mem counting promises to be significant for combinatorial algorithms of all kinds. The standard

graphs available in the Stanford GraphBase should make it possible to carry out a large number of machine-
independent experiments concerning the practical efficiency of algorithms that have previously been studied
only asymptotically.

2 MINIMUM SPANNING TREES MILES SPAN §2

2. The graphs we will deal with are produced by the miles subroutine, found in the GB MILES module.
As explained there, miles (n,north weight ,west weight , pop weight , 0,max degree , seed) produces a graph of
n ≤ 128 vertices based on the driving distances between North American cities. By default we take n = 100,
north weight = west weight = pop weight = 0, and max degree = 10; this gives billions of different sparse
graphs, when different seed values are specified, since a different random number seed generally results in
the selection of another one of the

(
128
100

)
possible subgraphs.

The default parameters can be changed by specifying options on the command line, at least in a UNIX

implementation, thereby obtaining a variety of special effects. For example, the value of n can be raised
or lowered and/or the graph can be made more or less sparse. The user can bias the selection by ranking
cities according to their population and/or position, if nonzero values are given to any of the parameters
north weight , west weight , or pop weight . Command-line options −n⟨number⟩, −N⟨number⟩, −W⟨number⟩,
−P⟨number⟩, −d⟨number⟩, and −s⟨number⟩ are used to specify non-default values of the respective quantities
n, north weight , west weight , pop weight , max degree , and seed .
If the user specifies a −r option, for example by saying ‘miles_span −r10’, this program will investigate

the spanning trees of a series of, say, 10 graphs having consecutive seed values. (This option makes sense
only if north weight = west weight = pop weight = 0, because miles chooses the top n cities by weight. The
procedure rarely needs to use random numbers to break ties when the weights are nonzero, because cities
rarely have exactly the same weight in that case.)
The special command-line option −g⟨filename ⟩ overrides all others. It substitutes an external graph

previously saved by save graph for the graphs produced by miles .
Here is the overall layout of this C program:

#include "gb_graph.h" /∗ the GraphBase data structures ∗/
#include "gb_save.h" /∗ restore graph ∗/
#include "gb_miles.h" /∗ the miles routine ∗/
⟨Preprocessor definitions ⟩
⟨Global variables 3 ⟩
⟨Procedures to be declared early 67 ⟩
⟨Priority queue subroutines 24 ⟩
⟨Subroutines 7 ⟩
main (argc , argv)

int argc ; /∗ the number of command-line arguments ∗/
char ∗argv []; /∗ an array of strings containing those arguments ∗/

{ unsigned long n = 100; /∗ the desired number of vertices ∗/
unsigned long n weight = 0; /∗ the north weight parameter ∗/
unsigned long w weight = 0; /∗ the west weight parameter ∗/
unsigned long p weight = 0; /∗ the pop weight parameter ∗/
unsigned long d = 10; /∗ the max degree parameter ∗/
long s = 0; /∗ the random number seed ∗/
unsigned long r = 1; /∗ the number of repetitions ∗/
char ∗file name = Λ; /∗ external graph to be restored ∗/
⟨Scan the command-line options 4 ⟩;
while (r−−) {

if (file name) g = restore graph (file name);
else g = miles (n,n weight ,w weight , p weight , 0L, d, s);
if (g ≡ Λ ∨ g⃗ n ≤ 1) {
fprintf (stderr , "Sorry,␣can’t␣create␣the␣graph!␣(error␣code␣%ld)\n", panic code);
return −1; /∗ error code 0 means the graph is too small ∗/

}
⟨Report the number of mems needed to compute a minimum spanning tree of g by various

algorithms 5 ⟩;
gb recycle (g);

§2 MILES SPAN MINIMUM SPANNING TREES 3

s++; /∗ increase the seed value ∗/
}
return 0; /∗ normal exit ∗/

}

3. ⟨Global variables 3 ⟩ ≡
Graph ∗g; /∗ the graph we will work on ∗/

See also sections 6, 10, 13, 19, 23, 31, 37, 57, and 68.

This code is used in section 2.

4. ⟨Scan the command-line options 4 ⟩ ≡
while (−−argc) {
if (sscanf (argv [argc], "−n%lu",&n) ≡ 1) ;
else if (sscanf (argv [argc], "−N%lu",&n weight) ≡ 1) ;
else if (sscanf (argv [argc], "−W%lu",&w weight) ≡ 1) ;
else if (sscanf (argv [argc], "−P%lu",&p weight) ≡ 1) ;
else if (sscanf (argv [argc], "−d%lu",&d) ≡ 1) ;
else if (sscanf (argv [argc], "−r%lu",&r) ≡ 1) ;
else if (sscanf (argv [argc], "−s%ld",&s) ≡ 1) ;
else if (strcmp(argv [argc], "−v") ≡ 0) verbose = 1;
else if (strncmp(argv [argc], "−g", 2) ≡ 0) file name = argv [argc] + 2;
else {
fprintf (stderr , "Usage:␣%s␣[−nN][−dN][−rN][−sN][−NN][−WN][−PN][−v][−gfoo]\n", argv [0]);
return −2;

}
}
if (file name) r = 1;

This code is used in section 2.

4 MINIMUM SPANNING TREES MILES SPAN §5

5. We will try out four basic algorithms that have received prominent attention in the literature. Graham
and Hell’s Algorithm 1 is represented by the krusk procedure, which uses Kruskal’s algorithm after the edges
have been sorted by length with a radix sort. Their Algorithm 2 is represented by the jar pr procedure,
which incorporates a priority queue structure that we implement in two ways, either as a simple binary
heap or as a Fibonacci heap. And their Algorithm 3 is represented by the cher tar kar procedure, which
implements a method similar to Bor̊uvka’s that was independently discovered by Cheriton and Tarjan and
later simplified and refined by Karp and Tarjan.

#define INFINITY (unsigned long) −1 /∗ value returned when there’s no spanning tree ∗/
⟨Report the number of mems needed to compute a minimum spanning tree of g by various algorithms 5 ⟩ ≡

printf ("The␣graph␣%s␣has␣%ld␣edges,\n", g⃗ id , g⃗ m/2);
sp length = krusk (g);
if (sp length ≡ INFINITY) printf ("␣␣and␣it␣isn’t␣connected.\n");
else printf ("␣␣and␣its␣minimum␣spanning␣tree␣has␣length␣%ld.\n", sp length);
printf ("␣The␣Kruskal/radix−sort␣algorithm␣takes␣%ld␣mems;\n",mems);
⟨Execute jar pr (g) with binary heaps as the priority queue algorithm 28 ⟩;
printf ("␣the␣Jarnik/Prim/binary−heap␣algorithm␣takes␣%ld␣mems;\n",mems);
⟨Allocate additional space needed by the more complex algorithms; or goto done if there isn’t enough

room 32 ⟩;
⟨Execute jar pr (g) with Fibonacci heaps as the priority queue algorithm 42 ⟩;
printf ("␣the␣Jarnik/Prim/Fibonacci−heap␣algorithm␣takes␣%ld␣mems;\n",mems);
if (sp length ̸= cher tar kar (g)) {
if (gb trouble code) printf ("␣...oops,␣I’ve␣run␣out␣of␣memory!\n");
else printf ("␣...oops,␣I’ve␣got␣a␣bug,␣please␣fix␣fix␣fix\n");
return −3;

}
printf ("␣the␣Cheriton/Tarjan/Karp␣algorithm␣takes␣%ld␣mems.\n\n",mems);

done : ;

This code is used in section 2.

6. ⟨Global variables 3 ⟩ +≡
unsigned long sp length ; /∗ length of the minimum spanning tree ∗/

7. When the verbose switch is nonzero, edges found by the various algorithms will call the report subroutine.

⟨Subroutines 7 ⟩ ≡
report (u, v, l)

Vertex ∗u, ∗v; /∗ adjacent vertices in the minimum spanning tree ∗/
long l; /∗ the length of the edge between them ∗/

{
printf ("␣␣%ld␣miles␣between␣%s␣and␣%s␣[%ld␣mems]\n", l, u⃗ name , v⃗ name ,mems);

}
See also sections 14, 20, and 55.

This code is used in section 2.

§8 MILES SPAN STRATEGIES AND GROUND RULES 5

8. Strategies and ground rules. Let us say that a fragment is any subtree of a minimum spanning
tree. All three algorithms we implement make use of a basic principle first stated in full generality by R. C.
Prim in 1957: “If a fragment F does not include all the vertices, and if e is a shortest edge joining F to a
vertex not in F , then F ∪ e is a fragment.” To prove Prim’s principle, let T be a minimum spanning tree
that contains F but not e. Adding e to T creates a circuit containing some edge e′ ̸= e, where e′ runs from
a vertex in F to a vertex not in F . Deleting e′ from T ∪ e produces a spanning tree T ′ of total length no
larger than the total length of T . Hence T ′ is a minimum spanning tree containing F ∪ e, QED.

9. The graphs produced by miles have special properties, and it is fair game to make use of those properties
if we can.
First, the length of each edge is a positive integer less than 212.
Second, the kth vertex vk of the graph is represented in C programs by the pointer expression g⃗ vertices+k.

If weights have been assigned, these vertices will be in order by weight. For example, if north weight = 1
but west weight = pop weight = 0, vertex v0 will be the most northerly city and vertex vn−1 will be the
most southerly.
Third, the edges accessible from a vertex v appear in a linked list starting at v⃗ arcs . An edge from v to

vj will precede an edge from v to vk in this list if and only if j > k.
Fourth, the vertices have coordinates v⃗ x coord and v⃗ y coord that are correlated with the length of edges

between them: The Euclidean distance between the coordinates of two vertices tends to be small if and
only if those vertices are connected by a relatively short edge. (This is only a tendency, not a certainty; for
example, some cities around Chesapeake Bay are fairly close together as the crow flies, but not within easy
driving range of each other.)
Fifth, the edge lengths satisfy the triangle inequality: Whenever three edges form a cycle, the longest is

no longer than the sum of the lengths of the two others. (It can be proved that the triangle inequality is of
no use in finding minimum spanning trees; we mention it here only to exhibit yet another way in which the
data produced by miles is known to be nonrandom.)
Our implementation of Kruskal’s algorithm will make use of the first property, and it also uses part of the

third to avoid considering an edge more than once. We will not exploit the other properties, but a reader
who wants to design algorithms that use fewer mems to find minimum spanning trees of these graphs is free
to use any idea that helps.

10. Speaking of mems, here are the simple C instrumentation macros that we use to count memory
references. The macros are called o, oo , ooo , and oooo ; hence Jon Bentley has called this a “little oh
analysis.” Implementors who want to count mems are supposed to say, e.g., ‘oo ,’ just before an assignment
statement or boolean expression that makes two references to memory. The C preprocessor will convert this
to a statement that increases mems by 2 as that statement or expression is evaluated.
The semantics of C tell us that the evaluation of an expression like ‘a ∧ (o, a⃗ len > 10)’ will increment

mems if and only if the pointer variable a is non-null. Warning: The parentheses are very important in this
example, because C’s operator ∧ (i.e., &&) has higher precedence than comma.
Values of significant variables, like a in the previous example, can be assumed to be in “registers,” and no

charge is made for arithmetic computations that involve only registers. But the total number of registers in
an implementation must be finite and fixed, independent of the problem size.

C does not allow the omacros to appear in declarations, so we cannot take full advantage of C’s initialization
mechanism when we are counting mems. But it’s easy to initialize variables in separate statements after the
declarations are done.

#define o mems++

#define oo mems += 2
#define ooo mems += 3
#define oooo mems += 4

⟨Global variables 3 ⟩ +≡
long mems ; /∗ the number of memory references counted ∗/

6 STRATEGIES AND GROUND RULES MILES SPAN §11

11. Examples of these mem-counting conventions appear throughout the program that follows. Some
people will undoubtedly ask why the insertion of macros by hand is being recommended here, when it would
be possible to develop a fancy system that counts mems automatically. The author believes that it is best
to rely on programmers to introduce o and oo , etc., by themselves, for several reasons. (1) The macros
can be inserted easily and quickly using a text editor. (2) An implementation need not pay for mems that
could be avoided by a suitable optimizing compiler or by making the C program text slightly more complex;
thus, authors can use their good judgment to keep programs more readable than if the code were overly
hand-optimized. (3) The programmer should be able to see exactly where mems are being charged, as an aid
to bottleneck elimination. Occurrences of o and oo make this plain without messing up the program text.
(4) An implementation need not be charged for mems that merely provide diagnostic output, or mems that
do redundant computations just to double-check the validity of “proven” assertions as a program is being
tested.
Computer architecture is converging rapidly these days to the design of machines in which the exact

running time of a program depends on complicated interactions between pipelined circuitry and the dynamic
properties of cache mapping in a memory hierarchy, not to mention the effects of compilers and operating
systems. But a good approximation to running time is usually obtained if we assume that the amount of
computation is proportional to the activity of the memory bus between registers and main memory. This
approximation is likely to get even better in the future, as RISC computers get faster and faster in comparison
to memory devices. Although the mem measure is far from perfect, it appears to be significantly less distorted
than any other measurement that can be obtained without considerably more work. An implementation that
is designed to use few mems will almost certainly be efficient on today’s sequential computers, as well as on
the sequential computers we can expect to be built in the foreseeable future. And the converse statement is
even more true: An algorithm that runs fast will not consume many mems.
Of course authors are expected to be reasonable and fair when they are competing for minimum-mem

prizes. They must be ready to submit their programs to inspection by impartial judges. A good algorithm
will not need to abuse the spirit of realistic mem-counting.
Mems can be analyzed theoretically as well as empirically. This means we can attach constants to estimates

of running time, instead of always resorting to O notation.

§12 MILES SPAN KRUSKAL’S ALGORITHM 7

12. Kruskal’s algorithm. The first algorithm we shall implement and instrument is the simplest: It
considers the edges one by one in order of nondecreasing length, selecting each edge that does not form a
cycle with previously selected edges.
We know that the edge lengths are less than 212, so we can sort them into order with two passes of a

26-bucket radix sort. We will arrange to have them appear in the buckets as linked lists of Arc records; the
two utility fields of an Arc will be called from and klink , respectively.

#define from a.V /∗ an edge goes from vertex a⃗ from to vertex a⃗ tip ∗/
#define klink b.A /∗ the next longer edge after a will be a⃗ klink ∗/
⟨Put all the edges into bucket [0] through bucket [63] 12 ⟩ ≡
o, n = g⃗ n;
for (l = 0; l < 64; l++) oo , aucket [l] = bucket [l] = Λ;
for (o, v = g⃗ vertices ; v < g⃗ vertices + n; v++)
for (o, a = v⃗ arcs ; a ∧ (o, a⃗ tip > v); o, a = a⃗ next) {
o, a⃗ from = v;
o, l = a⃗ len & #3f; /∗ length mod 64 ∗/
oo , a⃗ klink = aucket [l];
o, aucket [l] = a;

}
for (l = 63; l ≥ 0; l−−)
for (o, a = aucket [l]; a;) { register long ll ;
register Arc ∗aa = a;

o, a = a⃗ klink ;
o, ll = aa⃗ len ≫ 6; /∗ length divided by 64 ∗/
oo , aa⃗klink = bucket [ll];
o, bucket [ll] = aa ;

}
This code is used in section 14.

13. ⟨Global variables 3 ⟩ +≡
Arc ∗aucket [64], ∗bucket [64]; /∗ heads of linked lists of arcs ∗/

8 KRUSKAL’S ALGORITHM MILES SPAN §14

14. Kruskal’s algorithm now takes the following form.

⟨Subroutines 7 ⟩ +≡
unsigned long krusk (g)

Graph ∗g;
{ ⟨Local variables for krusk 15 ⟩
mems = 0;
⟨Put all the edges into bucket [0] through bucket [63] 12 ⟩;
if (verbose) printf ("␣␣␣[%ld␣mems␣to␣sort␣the␣edges␣into␣buckets]\n",mems);
⟨Put all the vertices into components by themselves 17 ⟩;
for (l = 0; l < 64; l++)

for (o, a = bucket [l]; a; o, a = a⃗ klink) {
o, u = a⃗ from ;
o, v = a⃗ tip ;
⟨ If u and v are already in the same component, continue 16 ⟩;
if (verbose) report (a⃗ from , a⃗ tip , a⃗ len);
o, tot len += a⃗ len ;
if (−−components ≡ 1) return tot len ;
⟨Merge the components containing u and v 18 ⟩;

}
return INFINITY; /∗ the graph wasn’t connected ∗/

}

15. Lest we forget, we’d better declare all the local variables we’ve been using.

⟨Local variables for krusk 15 ⟩ ≡
register Arc ∗a; /∗ current edge of interest ∗/
register long l; /∗ current bucket of interest ∗/
register Vertex ∗u, ∗v, ∗w; /∗ current vertices of interest ∗/
unsigned long tot len = 0; /∗ total length of edges already chosen ∗/
long n; /∗ the number of vertices ∗/
long components ;

This code is used in section 14.

16. The remaining things that krusk needs to do are easily recognizable as an application of “equivalence
algorithms” or “union/find” data structures. We will use a simple approach whose average running time on
random graphs was shown to be linear by Knuth and Schönhage in Theoretical Computer Science 6 (1978),
281–315.
The vertices of each component (that is, of each connected fragment defined by the edges selected so

far) will be linked circularly by clink pointers. Each vertex also has a comp field that points to a unique
vertex representing its component. Each component representative also has a csize field that tells how many
vertices are in the component.

#define clink z.V /∗ pointer to another vertex in the same component ∗/
#define comp y.V /∗ pointer to component representative ∗/
#define csize x.I /∗ size of the component (maintained only for representatives) ∗/
⟨ If u and v are already in the same component, continue 16 ⟩ ≡
if (oo , u⃗ comp ≡ v⃗ comp) continue;

This code is used in section 14.

§17 MILES SPAN KRUSKAL’S ALGORITHM 9

17. We don’t need to charge any mems for fetching g⃗ vertices , because krusk has already referred to it.

⟨Put all the vertices into components by themselves 17 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + n; v++) {
oo , v⃗ clink = v⃗ comp = v;
o, v⃗ csize = 1;

}
components = n;

This code is used in section 14.

18. The operation of merging two components together requires us to change two clink pointers, one csize
field, and the comp fields in each vertex of the smaller component.

Here we charge two mems for the first if test, since u⃗ csize and v⃗ csize are being fetched from memory.
Then we charge only one mem when u⃗ csize is being updated, since the values being added together have
already been fetched. True, the compiler has to be smart to realize that it’s safe to add the fetched values
u⃗ csize + v⃗ csize even though u and v might have been swapped in the meantime; but we are assuming that
the compiler is extremely clever. (Otherwise we would have to clutter up our program every time we don’t
trust the compiler. After all, programs that count mems are intended primarily to be read. They aren’t
intended for production jobs.)

⟨Merge the components containing u and v 18 ⟩ ≡
u = u⃗ comp ; /∗ u⃗ comp has already been fetched from memory ∗/
v = v⃗ comp ; /∗ ditto for v⃗ comp ∗/
if (oo , u⃗ csize < v⃗ csize) {
w = u; u = v; v = w;

} /∗ now v’s component is smaller than u’s (or equally small) ∗/
o, u⃗ csize += v⃗ csize ;
o, w = v⃗ clink ;
oo , v⃗ clink = u⃗ clink ;
o, u⃗ clink = w;
for (; ; o, w = w⃗ clink) {
o, w⃗ comp = u;
if (w ≡ v) break;

}
This code is used in section 14.

10 JARNÍK AND PRIM’S ALGORITHM MILES SPAN §19

19. Jarńık and Prim’s algorithm. A second approach to minimum spanning trees is also pretty simple,
except for one technicality: We want to write it in a sufficiently general manner that different priority queue
algorithms can be plugged in. The basic idea is to choose an arbitrary vertex v0 and connect it to its nearest
neighbor v1, then to connect that fragment to its nearest neighbor v2, and so on. A priority queue holds all
vertices that are adjacent to but not already in the current fragment; the key value stored with each vertex
is its distance to the current fragment.
We want the priority queue data structure to support the four operations init queue (d), enqueue (v, d),

requeue (v, d), and del min (), described in the GB DIJK module. Dijkstra’s algorithm for shortest paths,
described there, is remarkably similar to Jarńık and Prim’s algorithm for minimum spanning trees; in fact,
Dijkstra discovered the latter algorithm independently, at the same time as he came up with his procedure
for shortest paths.
As in GB DIJK, we define pointers to priority queue subroutines so that the queueing mechanism can be

varied.

#define dist z.I /∗ this is the key field for vertices in the priority queue ∗/
#define backlink y.V /∗ this vertex is the stated dist away ∗/
⟨Global variables 3 ⟩ +≡
void (∗init queue)(); /∗ create an empty priority queue ∗/
void (∗enqueue)(); /∗ insert a new element in the priority queue ∗/
void (∗requeue)(); /∗ decrease the key of an element in the queue ∗/
Vertex ∗(∗del min)(); /∗ remove an element with smallest key ∗/

20. The vertices in this algorithm are initially “unseen”; they become “seen” when they enter the priority
queue, and finally “known” when they leave it and enter the current fragment. We will put a special constant
in the backlink field of known vertices. A vertex will be unseen if and only if its backlink is Λ.

#define KNOWN (Vertex ∗) 1 /∗ special backlink to mark known vertices ∗/
⟨Subroutines 7 ⟩ +≡
unsigned long jar pr (g)

Graph ∗g;
{ register Vertex ∗t; /∗ vertex that is just becoming known ∗/
long fragment size ; /∗ number of vertices in the tree so far ∗/
unsigned long tot len = 0; /∗ sum of edge lengths in the tree so far ∗/
mems = 0;
⟨Make t = g⃗ vertices the only vertex seen; also make it known 21 ⟩;
while (fragment size < g⃗ n) {

⟨Put all unseen vertices adjacent to t into the queue, and update the distances of the other vertices
adjacent to t 22 ⟩;

t = (∗del min)();
if (t ≡ Λ) return INFINITY; /∗ the graph is disconnected ∗/
if (verbose) report (t⃗ backlink , t, t⃗ dist);
o, tot len += t⃗ dist ;
o, t⃗ backlink = KNOWN;
fragment size++;

}
return tot len ;

}

§21 MILES SPAN JARNÍK AND PRIM’S ALGORITHM 11

21. Notice that we don’t charge any mems for the subroutine call to init queue , except for mems counted in
the subroutine itself. What should we charge in general for subroutine linkage when we are counting mems?
The parameters to subroutines generally go into registers, and registers are “free”; also, a compiler can often
choose to implement a procedure in line, thereby reducing the overhead to zero. Hence, the recommended
method for charging mems with respect to subroutines is: Charge nothing if the subroutine is not recursive;
otherwise charge twice the number of things that need to be saved on a runtime stack. (The return address
is one of the things that needs to be saved.)

⟨Make t = g⃗ vertices the only vertex seen; also make it known 21 ⟩ ≡
for (oo , t = g⃗ vertices + g⃗ n− 1; t > g⃗ vertices ; t−−) o, t⃗ backlink = Λ;
o, t⃗ backlink = KNOWN;
fragment size = 1;
(∗init queue)(0L); /∗ make the priority queue empty ∗/

This code is used in section 20.

22. ⟨Put all unseen vertices adjacent to t into the queue, and update the distances of the other vertices
adjacent to t 22 ⟩ ≡

{ register Arc ∗a; /∗ an arc leading from t ∗/
for (o, a = t⃗ arcs ; a; o, a = a⃗ next) {
register Vertex ∗v; /∗ a vertex adjacent to t ∗/
o, v = a⃗ tip ;
if (o, v⃗ backlink) { /∗ v has already been seen ∗/
if (v⃗ backlink > KNOWN) {
if (oo , a⃗ len < v⃗ dist) {

o, v⃗ backlink = t;
(∗requeue)(v, a⃗ len); /∗ we found a better way to get there ∗/

}
}

} else { /∗ v hasn’t been seen before ∗/
o, v⃗ backlink = t;
o, (∗enqueue)(v, a⃗ len);

}
}

}
This code is used in section 20.

12 BINARY HEAPS MILES SPAN §23

23. Binary heaps. To complete the jar pr routine, we need to fill in the four priority queue functions.
Jarńık wrote his original paper before computers were known; Prim and Dijkstra wrote theirs before efficient
priority queue algorithms were known. Their original algorithms therefore took Θ(n2) steps. Kerschenbaum
and Van Slyke pointed out in 1972 that binary heaps could do better. A simplified version of binary heaps
(invented by Williams in 1964) is presented here.
A binary heap is an array of n elements, and we need space for it. Fortunately the space is already there;

we can use utility field u in each of the vertex records of the graph. Moreover, if heap elt (i) points to vertex v,
we will arrange things so that v⃗ heap index = i.

#define heap elt (i) (gv + i)⃗ u.V /∗ the ith vertex of the heap; gv = g⃗ vertices ∗/
#define heap index v.I /∗ the v utility field says where a vertex is in the heap ∗/
⟨Global variables 3 ⟩ +≡
Vertex ∗gv ; /∗ g⃗ vertices , the base of the heap array ∗/
long hsize ; /∗ the number of elements currently in the heap ∗/

24. To initialize the heap, we need only initialize two “registers” to known values, so we don’t have to
charge any mems at all. (In a production implementation, this code would appear in-line as part of the
spanning tree algorithm.)
Important Note: This routine refers to the global variable g, which is set in main (not in jar pr). Suitable

changes need to be made if these binary heap routines are used in other programs.

⟨Priority queue subroutines 24 ⟩ ≡
void init heap(d) /∗ makes the heap empty ∗/

long d;
{
gv = g⃗ vertices ;
hsize = 0;

}
See also sections 25, 26, 27, 30, 33, 34, 38, 45, 50, 51, 52, and 54.

This code is used in section 2.

§25 MILES SPAN BINARY HEAPS 13

25. The key invariant property that makes heaps work is

heap elt (k/2)⃗ dist ≤ heap elt (k)⃗ dist , for 1 < k ≤ hsize .

(A reader who has not seen heap ordering before should stop at this point and study the beautiful con-
sequences of this innocuously simple set of inequalities.) The enqueueing operation turns out to be quite
simple:

⟨Priority queue subroutines 24 ⟩ +≡
void enq heap(v, d)

Vertex ∗v; /∗ vertex that is entering the queue ∗/
long d; /∗ its key (aka dist) ∗/

{ register unsigned long k; /∗ position of a “hole” in the heap ∗/
register unsigned long j; /∗ the parent of that position ∗/
register Vertex ∗u; /∗ heap elt (j) ∗/
o, v⃗ dist = d;
k = ++hsize ;
j = k ≫ 1; /∗ k/2 ∗/
while (j > 0 ∧ (oo , (u = heap elt (j))⃗ dist > d)) {
o, heap elt (k) = u; /∗ the hole moves to parent position ∗/
o, u⃗ heap index = k;
k = j;
j = k ≫ 1;

}
o, heap elt (k) = v;
o, v⃗ heap index = k;

}

14 BINARY HEAPS MILES SPAN §26

26. And in fact, the general requeueing operation is almost identical to enqueueing. This operation is
popularly called “siftup,” because the vertex whose key is being reduced may displace its ancestors higher in
the heap. We could have implemented enqueueing by first placing the new element at the end of the heap,
then requeueing it; that would have cost at most a couple mems more.

⟨Priority queue subroutines 24 ⟩ +≡
void req heap(v, d)

Vertex ∗v; /∗ vertex whose key is being reduced ∗/
long d; /∗ its new dist ∗/

{ register unsigned long k; /∗ position of a “hole” in the heap ∗/
register unsigned long j; /∗ the parent of that position ∗/
register Vertex ∗u; /∗ heap elt (j) ∗/
o, v⃗ dist = d;
o, k = v⃗ heap index ; /∗ now heap elt (k) = v ∗/
j = k ≫ 1; /∗ k/2 ∗/
if (j > 0 ∧ (oo , (u = heap elt (j))⃗ dist > d)) { /∗ change is needed ∗/
do {
o, heap elt (k) = u; /∗ the hole moves to parent position ∗/
o, u⃗ heap index = k;
k = j;
j = k ≫ 1; /∗ k/2 ∗/

} while (j > 0 ∧ (oo , (u = heap elt (j))⃗ dist > d));
o, heap elt (k) = v;
o, v⃗ heap index = k;

}
}

§27 MILES SPAN BINARY HEAPS 15

27. Finally, the procedure for removing the vertex with smallest key is only a bit more difficult. The vertex
to be removed is always heap elt (1). After we delete it, we “sift down” heap elt (hsize), until the basic heap
inequalities hold once again.
At a crucial point in this process, we have j⃗ dist < u⃗ dist . We cannot then have j = hsize + 1, because

the previous steps have made (hsize + 1)⃗ dist = u⃗ dist = d.

⟨Priority queue subroutines 24 ⟩ +≡
Vertex ∗del heap()
{ Vertex ∗v; /∗ vertex to return ∗/
register Vertex ∗u; /∗ vertex being sifted down ∗/
register unsigned long k; /∗ hole in the heap ∗/
register unsigned long j; /∗ child of that hole ∗/
register long d; /∗ u⃗ dist , the vertex of the vertex being sifted ∗/
if (hsize ≡ 0) return Λ;
o, v = heap elt (1);
o, u = heap elt (hsize−−);
o, d = u⃗ dist ;
k = 1;
j = 2;
while (j ≤ hsize) {

if (oooo , heap elt (j)⃗ dist > heap elt (j + 1)⃗ dist) j++;
if (heap elt (j)⃗ dist ≥ d) break;
o, heap elt (k) = heap elt (j); /∗ NB: we cannot have j > hsize , see above ∗/
o, heap elt (k)⃗ heap index = k;
k = j; /∗ the hole moves to child position ∗/
j = k ≪ 1; /∗ 2k ∗/

}
o, heap elt (k) = u;
o, u⃗ heap index = k;
return v;

}

28. OK, here’s how we plug binary heaps into Jarńık/Prim.

⟨Execute jar pr (g) with binary heaps as the priority queue algorithm 28 ⟩ ≡
init queue = init heap ;
enqueue = enq heap ;
requeue = req heap ;
del min = del heap ;
if (sp length ̸= jar pr (g)) {
printf ("␣...oops,␣I’ve␣got␣a␣bug,␣please␣fix␣fix␣fix\n");
return −4;

}
This code is used in section 5.

16 FIBONACCI HEAPS MILES SPAN §29

29. Fibonacci heaps. The running time of Jarńık/Prim with binary heaps, when the algorithm is
applied to a connected graph with n vertices and m edges, is O(m log n), because the total number of
operations is O(m+ n) = O(m) and each heap operation takes at most O(log n) time.

Fibonacci heaps were invented by Fredman and Tarjan in 1984, in order to do better than this. The
Jarńık/Prim algorithm does O(n) enqueueing operations, O(n) delete-min operations, and O(m) requeueing
operations; so Fredman and Tarjan designed a data structure that would support requeueing in “constant
amortized time.” In other words, Fibonacci heaps allow us to do m requeueing operations with a total
cost of O(m), even though some of the individual requeueings might take longer. The resulting asymptotic
running time is then O(m + n log n). (This turns out to be optimum within a constant factor, when the
same technique is applied to Dijkstra’s algorithm for shortest paths. But for minimum spanning trees the
Fibonacci method is not always optimum; for example, if m ≈ n

√
log n, the algorithm of Cheriton and

Tarjan has slightly better asymptotic behavior, O(m log log n).)
Fibonacci heaps are more complex than binary heaps, so we can expect that overhead costs will make

them non-competitive unless m and n are quite large. Furthermore, it is not clear that the running time
with simple binary heaps will behave as m log n on realistic data, because O(m log n) is a worst-case estimate
based on rather pessimistic assumptions. (For example, requeueing might rarely require many iterations of
the siftup loop.) But it will be instructive to implement Fibonacci heaps as best we can, just to see how
good they look in actual practice.
Let us say that the rank of a node in a forest is the number of children it has. A Fibonacci heap is an

unordered forest of trees in which the key of each node is less than or equal to the key of each child of that
node, and in which the following further condition, called property F, also holds: The ranks {r1, r2, . . . , rk}
of the children of every node of rank k, when put into nondecreasing order r1 ≤ r2 ≤ · · · ≤ rk, satisfy
rj ≥ j − 2 for all j.
As a consequence of property F, we can prove by induction that every node of rank k has at least Fk+2

descendants (including itself). Therefore, for example, we cannot have a node of rank ≥ 30 unless the total
size of the forest is at least F32 = 2,178,309. We cannot have a node of rank ≥ 46 unless the total size of the
forest exceeds 232.

30. We will represent a Fibonacci heap with a rather elaborate data structure, in order to guarantee the
efficiency of all the necessary operations. Each node will have four pointers: parent , the node’s parent (or Λ
if the node is a root); child , one of the node’s children (or undefined if the node has no children); lsib and
rsib , the node’s left and right siblings. The children of each node, and the roots of the forest, are doubly
linked by lsib and rsib in circular lists; the nodes in these lists can appear in any convenient order, and the
child pointer can point to any child.
Besides the four pointers, there is a rank field, which tells how many children exist, and a tag field, which

is either 0 or 1.
Suppose a node has children of ranks {r1, r2, . . . , rk}, where r1 ≤ r2 ≤ · · · ≤ rk. We know that rj ≥ j − 2

for all j; we say that the node has l critical children if there are l cases of equality, where rj = j − 2. Our
implementation will guarantee that any node with l critical children will have at least l tagged children of the
corresponding ranks. For example, suppose a node has seven children, of respective ranks {1, 1, 1, 2, 4, 4, 6}.
Then it has three critical children, because r3 = 1, r4 = 2, and r6 = 4. In our implementation, at least one
of the children of rank 1 will have tag = 1, and so will the child of rank 2; so will one of the children of
rank 4.
There is an external pointer called F heap , which indicates a node whose key is smallest. (If the heap is

empty, F heap is Λ.)

⟨Priority queue subroutines 24 ⟩ +≡
void init F heap(d)

long d;
{ F heap = Λ; }

31. ⟨Global variables 3 ⟩ +≡
Vertex ∗F heap ; /∗ pointer to the ring of root nodes ∗/

§32 MILES SPAN FIBONACCI HEAPS 17

32. We can save a bit of space and time by combining the rank and tag fields into a single rank tag field,
which contains rank ∗ 2 + tag .
Vertices in GraphBase graphs have six utility fields. That’s just enough for parent , child , lsib , rsib ,

rank tag , and the key field dist . But unfortunately we also need the backlink field, so we are over the limit.
That’s not really so bad, however; we can set up another array of n records, and point to it. The extra
running time needed for indirect pointing does not have to be charged to mems, because a production system
involving Fibonacci heaps would simply redefine Vertex records to have seven utility fields instead of six. In
this way we can simulate the behavior of larger records without changing the basic GraphBase conventions.
We will want an Arc record for each vertex in our next algorithm, so we might as well allocate storage

for it now even though Fibonacci heaps need only two of the five fields.

#define newarc u.A /∗ v⃗ newarc points to an Arc record associated with v ∗/
#define parent newarc⃗ tip
#define child newarc⃗ a.V
#define lsib v.V
#define rsib w.V
#define rank tag x.I

⟨Allocate additional space needed by the more complex algorithms; or goto done if there isn’t enough
room 32 ⟩ ≡

{ register Arc ∗aa ;
register Vertex ∗uu ;
aa = gb typed alloc(g⃗ n,Arc, g⃗ aux data);
if (aa ≡ Λ) {
printf ("␣and␣there␣isn’t␣enough␣space␣to␣try␣the␣other␣methods.\n\n");
goto done ;

}
for (uu = g⃗ vertices ; uu < g⃗ vertices + g⃗ n; uu++, aa++) uu⃗newarc = aa ;

}
This code is used in section 5.

18 FIBONACCI HEAPS MILES SPAN §33

33. The potential energy of a Fibonacci heap, as we are representing it, is defined to be the number of
trees in the forest plus twice the total number of tagged children. When we operate on a heap, we will store
potential energy to be used up later; then it will be possible to do the later operations with only a small
incremental cost to the running time. (Potential energy is just a way to prove that the amortized cost is
small; it does not appear explicitly in our implementation. It simply explains why the number of mems we
compute will always be O(m+ n log n).)

Enqueueing is easy: We simply insert the new element as a new tree in the forest. This costs a constant
amount of time, including the cost of one new unit of potential energy for the new tree.
We can assume that F heap⃗ dist appears in a register, so we need not charge a mem to fetch it.

⟨Priority queue subroutines 24 ⟩ +≡
void enq F heap(v, d)

Vertex ∗v; /∗ vertex that is entering the queue ∗/
long d; /∗ its key (aka dist) ∗/

{
o, v⃗ dist = d;
o, v⃗ parent = Λ;
o, v⃗ rank tag = 0; /∗ v⃗ child need not be set ∗/
if (F heap ≡ Λ) {

oo ,F heap = v⃗ lsib = v⃗ rsib = v;
} else { register Vertex ∗u;

o, u = F heap⃗ lsib ;
o, v⃗ lsib = u;
o, v⃗ rsib = F heap ;
oo ,F heap⃗ lsib = u⃗ rsib = v;
if (F heap⃗ dist > d) F heap = v;

}
}

§34 MILES SPAN FIBONACCI HEAPS 19

34. Requeueing is of medium difficulty. If the key is being decreased in a root node, or if the decrease
doesn’t make the key less than the key of its parent, no links need to change (except possibly F heap itself).
Otherwise we detach the node and its descendants from its present family and put this former subtree into
the forest as a new tree. (One unit of potential energy must be stored with it.)
The rank of the former parent, p, decreases by 1. If p is a root, we’re done. Otherwise if p was not tagged,

we tag it (and pay for two additional units of energy). Property F still holds, because an untagged node
can always admit a decrease in rank. If p was tagged, however, we detach p and its remaining descendants,
making it another new tree of the forest, with p no longer tagged. Removing the tag releases enough stored
energy to pay for the extra work of moving p. Then we must decrease the rank of p’s parent, and so on, until
finally we get to a root or to an untagged node. The total net cost is at most three units of energy plus the
cost of relinking the original node, so it is O(1).
We needn’t clear the tag fields of root nodes, because we never look at them.

⟨Priority queue subroutines 24 ⟩ +≡
void req F heap(v, d)

Vertex ∗v; /∗ vertex whose key is being reduced ∗/
long d; /∗ its new dist ∗/

{ register Vertex ∗p, ∗pp ; /∗ parent and grandparent of v ∗/
register Vertex ∗u, ∗w; /∗ other vertices being modified ∗/
register long r; /∗ twice the rank plus the tag ∗/
o, v⃗ dist = d;
o, p = v⃗ parent ;
if (p ≡ Λ) {

if (F heap⃗ dist > d) F heap = v;
} else if (o, p⃗ dist > d)
while (1) {
o, r = p⃗ rank tag ;
if (r ≥ 4) /∗ v is not an only child ∗/
⟨Remove v from its family 35 ⟩;

⟨ Insert v into the forest 36 ⟩;
o, pp = p⃗ parent ;
if (pp ≡ Λ) { /∗ the parent of v is a root ∗/
o, p⃗ rank tag = r − 2; break;

}
if ((r & 1) ≡ 0) { /∗ the parent of v is untagged ∗/
o, p⃗ rank tag = r − 1; break; /∗ now it’s tagged ∗/

} else o, p⃗ rank tag = r − 2; /∗ tagged parent will become a root ∗/
v = p; p = pp ;

}
}

35. ⟨Remove v from its family 35 ⟩ ≡
{
o, u = v⃗ lsib ;
o, w = v⃗ rsib ;
o, u⃗ rsib = w;
o, w⃗ lsib = u;
if (o, p⃗ child ≡ v) o, p⃗ child = w;

}
This code is used in section 34.

20 FIBONACCI HEAPS MILES SPAN §36

36. ⟨ Insert v into the forest 36 ⟩ ≡
o, v⃗ parent = Λ;
o, u = F heap⃗ lsib ;
o, v⃗ lsib = u;
o, v⃗ rsib = F heap ;
oo ,F heap⃗ lsib = u⃗ rsib = v;
if (F heap⃗ dist > d) F heap = v; /∗ this can happen only with the original v ∗/

This code is used in section 34.

37. The del min operation is even more interesting; this, in fact, is where most of the action lies. We know
that F heap points to the vertex v we will be deleting. That’s nice, but we need to figure out the new value
of F heap . So we have to look at all the children of v and at all the root nodes in the forest. We have stored
up enough potential energy to do that, but we can reclaim the potential only if we rebuild the Fibonacci
heap so that the rebuilt version contains relatively few trees.
The solution is to make sure that the new heap has at most one root of each rank. Whenever we have two

tree roots of equal rank, we can make one the child of the other, thus reducing the number of trees by 1.
(The new child does not violate Property F, nor is it critical, so we can mark it untagged.) The largest rank
is always O(log n), if there are n nodes altogether, and we can afford to pay log n units of time for the work
that isn’t reclaimed from potential energy.
An array of pointers to roots of known rank is used to help control this part of the process.

⟨Global variables 3 ⟩ +≡
Vertex ∗new roots [46]; /∗ big enough for queues of size 232 ∗/

38. ⟨Priority queue subroutines 24 ⟩ +≡
Vertex ∗del F heap()
{ Vertex ∗final v = F heap ; /∗ the node to return ∗/
register Vertex ∗t, ∗u, ∗v, ∗w; /∗ registers for manipulation of links ∗/
register long h = −1; /∗ the highest rank present in new roots ∗/
register long r; /∗ rank of current tree ∗/
if (F heap) {

if (o,F heap⃗ rank tag < 2) o, v = F heap⃗ rsib ;
else {
o, w = F heap⃗ child ;
o, v = w⃗ rsib ;
oo , w⃗ rsib = F heap⃗ rsib ; /∗ link children of deleted node into the list ∗/
for (w = v; w ̸= F heap⃗ rsib ; o, w = w⃗ rsib) o, w⃗ parent = Λ;

}
while (v ̸= F heap) {

o, w = v⃗ rsib ;
⟨Put the tree rooted at v into the new roots forest 39 ⟩;
v = w;

}
⟨Rebuild F heap from new roots 41 ⟩;

}
return final v ;

}

§39 MILES SPAN FIBONACCI HEAPS 21

39. The work we do in this step is paid for by the unit of potential energy being freed as v leaves the old
forest, except for the work of increasing h; we charge the latter to the O(log n) cost of building new roots .

⟨Put the tree rooted at v into the new roots forest 39 ⟩ ≡
o, r = v⃗ rank tag ≫ 1;
while (1) {
if (h < r) {
do {

h++;
o,new roots [h] = (h ≡ r ? v : Λ);

} while (h < r);
break;

}
if (o,new roots [r] ≡ Λ) {
o,new roots [r] = v;
break;

}
u = new roots [r];
o,new roots [r] = Λ;
if (oo , u⃗ dist < v⃗ dist) {
o, v⃗ rank tag = r ≪ 1; /∗ v is not critical and needn’t be tagged ∗/
t = u; u = v; v = t;

}
⟨Make u a child of v 40 ⟩;
r++;

}
o, v⃗ rank tag = r ≪ 1; /∗ every root in new roots is untagged ∗/

This code is used in section 38.

40. When we get to this step, u and v both have rank r, and u⃗ dist ≥ v⃗ dist ; u is untagged.

⟨Make u a child of v 40 ⟩ ≡
if (r ≡ 0) {
o, v⃗ child = u;
oo , u⃗ lsib = u⃗ rsib = u;

} else {
o, t = v⃗ child ;
oo , u⃗ rsib = t⃗ rsib ;
o, u⃗ lsib = t;
oo , u⃗ rsib⃗ lsib = t⃗ rsib = u;

}
o, u⃗ parent = v;

This code is used in section 39.

22 FIBONACCI HEAPS MILES SPAN §41

41. And now we can breathe easy, because the last step is trivial.

⟨Rebuild F heap from new roots 41 ⟩ ≡
if (h < 0) F heap = Λ;
else { long d; /∗ smallest key value seen so far ∗/
o, u = v = new roots [h]; /∗ u and v will point to beginning and end of list, respectively ∗/
o, d = u⃗ dist ;
F heap = u;
for (h−−; h ≥ 0; h−−)

if (o,new roots [h]) {
w = new roots [h];
o, w⃗ lsib = v;
o, v⃗ rsib = w;
if (o, w⃗ dist < d) {
F heap = w;
d = w⃗ dist ;

}
v = w;

}
o, v⃗ rsib = u;
o, u⃗ lsib = v;

}
This code is used in section 38.

42. ⟨Execute jar pr (g) with Fibonacci heaps as the priority queue algorithm 42 ⟩ ≡
init queue = init F heap ;
enqueue = enq F heap ;
requeue = req F heap ;
del min = del F heap ;
if (sp length ̸= jar pr (g)) {
printf ("␣...oops,␣I’ve␣got␣a␣bug,␣please␣fix␣fix␣fix\n");
return −5;

}
This code is used in section 5.

§43 MILES SPAN BINOMIAL QUEUES 23

43. Binomial queues. Jean Vuillemin’s “binomial queue” structures [CACM 21 (1978), 309–314]
provide yet another appealing way to maintain priority queues. A binomial queue is a forest of trees
with keys ordered as in Fibonacci heaps, satisfying two conditions that are considerably stronger than the
Fibonacci heap property: Each node of rank k has children of respective ranks {0, 1, . . . , k−1}; and each root
of the forest has a different rank. It follows that each node of rank k has exactly 2k descendants (including
itself), and that a binomial queue of n elements has exactly as many trees as the number n has 1’s in binary
notation.
We could plug binomial queues into the Jarńık/Prim algorithm, but they don’t offer advantages over the

heap methods already considered because they don’t support the requeueing operation as nicely. Binomial
queues do, however, permit efficient merging—the operation of combining two priority queues into one—and
they achieve this without as much space overhead as Fibonacci heaps. In fact, we can implement binomial
queues with only two pointers per node, namely a pointer to the largest child and another to the next
sibling. This means we have just enough space in the utility fields of GraphBase Arc records to link the arcs
that extend out of a spanning tree fragment. The algorithm of Cheriton, Tarjan, and Karp, which we will
consider soon, maintains priority queues of arcs, not vertices; and it requires the operation of merging, not
requeueing. Therefore binomial queues are well suited to it, and we will prepare ourselves for that algorithm
by implementing basic binomial queue procedures.
Incidentally, if you wonder why Vuillemin called his structure a binomial queue, it’s because the trees of 2k

elements have many pleasant combinatorial properties, among which is the fact that the number of elements
on level l is the binomial coefficient

(
k
l

)
. The backtrack tree for subsets of a k-set has the same structure. A

picture of a binomial-queue tree with k = 5, drawn by Jill C. Knuth, appears as the frontispiece of The Art
of Computer Programming, facing page 1 of Volume 1.

#define qchild a.A /∗ pointer to the arc for largest child of an arc ∗/
#define qsib b.A /∗ pointer to next larger sibling, or from largest to smallest ∗/

44. A special header node is used at the head of a binomial queue, to represent the queue itself. The qsib
field of this node points to the smallest root node in the forest. (“Smallest” means smallest in rank, not in
key value.) The header also contains a qcount field, which takes the place of qchild ; the qcount is the total
number of nodes, so its binary representation characterizes the sizes of the trees accessible from qsib .

For example, suppose a queue with header node h contains five elements {a, b, c, d, e} whose keys happen
to be ordered alphabetically. The first tree might be the single node c; the other tree might be rooted at a,
with children e and b. Then we have

h⃗ qcount = 5, h⃗ qsib = c;
c⃗ qsib = a;
a⃗ qchild = b;
b⃗ qchild = d, b⃗ qsib = e;
e⃗ qsib = b.

The other fields c⃗ qchild , a⃗ qsib , e⃗ qchild , d⃗ qsib , and d⃗ qchild are undefined. We can save time by not
loading or storing the undefined fields, which make up about 3/8 of the structure.
An empty binomial queue would have h⃗ qcount = 0 and h⃗ qsib undefined.
Like Fibonacci heaps, binomial queues store potential energy: The number of energy units present is

simply the number of trees in the forest.

#define qcount a.I /∗ this field takes the place of qchild in header nodes ∗/

24 BINOMIAL QUEUES MILES SPAN §45

45. Most of the operations we want to do with binomial queues rely on the following basic subroutine,
which merges a forest of m nodes starting at q with a forest of mm nodes starting at qq , putting a pointer
to the resulting forest of m+mm nodes into h⃗ qsib . The amortized running time is O(logm), independent
of mm .
The len field, not dist , is the key field for this queue, because our nodes in this case are arcs instead of

vertices.

⟨Priority queue subroutines 24 ⟩ +≡
qunite (m, q,mm , qq , h)

register long m, mm ; /∗ number of nodes in the forests ∗/
register Arc ∗q, ∗qq ; /∗ binomial trees in the forests, linked by qsib ∗/
Arc ∗h; /∗ h⃗ qsib will get the result ∗/

{ register Arc ∗p; /∗ tail of the list built so far ∗/
register long k = 1; /∗ size of trees currently being processed ∗/
p = h;
while (m) {

if ((m& k) ≡ 0) {
if (mm & k) { /∗ qq goes into the merged list ∗/
o, p⃗ qsib = qq ; p = qq ; mm −= k;
if (mm) o, qq = qq⃗qsib ;

}
} else if ((mm & k) ≡ 0) { /∗ q goes into the merged list ∗/
o, p⃗ qsib = q; p = q; m −= k;
if (m) o, q = q⃗ qsib ;

} else ⟨Combine q and qq into a “carry” tree, and continue merging until the carry no longer
propagates 46 ⟩;

k ≪= 1;
}
if (mm) o, p⃗ qsib = qq ;

}

§46 MILES SPAN BINOMIAL QUEUES 25

46. As we have seen in Fibonacci heaps, two heap-ordered trees can be combined by simply attaching one
as a new child of the other. This operation preserves binomial trees. (In fact, if we use Fibonacci heaps
without ever doing a requeue operation, the forests that appear after every del min are binomial queues.)
The number of trees decreases by 1, so we have a unit of potential energy to pay for this computation.

⟨Combine q and qq into a “carry” tree, and continue merging until the carry no longer propagates 46 ⟩ ≡
{ register Arc ∗c; /∗ the “carry,” a tree of size 2k ∗/
register long key ; /∗ c⃗ len ∗/
register Arc ∗r, ∗rr ; /∗ remainders of the input lists ∗/
m −= k; if (m) o, r = q⃗ qsib ;
mm −= k; if (mm) o, rr = qq⃗qsib ;
⟨Set c to the combination of q and qq 47 ⟩;
k ≪= 1; q = r; qq = rr ;
while ((m | mm) & k) {
if ((m& k) ≡ 0) ⟨Merge qq into c and advance qq 49 ⟩
else {
⟨Merge q into c and advance q 48 ⟩;
if (mm & k) {
o, p⃗ qsib = qq ; p = qq ; mm −= k;
if (mm) o, qq = qq⃗qsib ;

}
}
k ≪= 1;

}
o, p⃗ qsib = c; p = c;

}
This code is used in section 45.

47. ⟨Set c to the combination of q and qq 47 ⟩ ≡
if (oo , q⃗ len < qq⃗ len) {
c = q, key = q⃗ len ;
q = qq ;

} else c = qq , key = qq⃗ len ;
if (k ≡ 1) o, c⃗ qchild = q;
else {
o, qq = c⃗ qchild ;
o, c⃗ qchild = q;
if (k ≡ 2) o, q⃗ qsib = qq ;
else oo , q⃗ qsib = qq⃗qsib ;
o, qq⃗qsib = q;

}
This code is used in section 46.

26 BINOMIAL QUEUES MILES SPAN §48

48. At this point, k > 1.

⟨Merge q into c and advance q 48 ⟩ ≡
{
m −= k; if (m) o, r = q⃗ qsib ;
if (o, q⃗ len < key) {

rr = c; c = q; key = q⃗ len ; q = rr ;
}
o, rr = c⃗ qchild ;
o, c⃗ qchild = q;
if (k ≡ 2) o, q⃗ qsib = rr ;
else oo , q⃗ qsib = rr⃗qsib ;
o, rr⃗qsib = q;
q = r;

}
This code is used in section 46.

49. ⟨Merge qq into c and advance qq 49 ⟩ ≡
{
mm −= k; if (mm) o, rr = qq⃗qsib ;
if (o, qq⃗ len < key) {

r = c; c = qq ; key = qq⃗ len ; qq = r;
}
o, r = c⃗ qchild ;
o, c⃗ qchild = qq ;
if (k ≡ 2) o, qq⃗qsib = r;
else oo , qq⃗qsib = r⃗ qsib ;
o, r⃗ qsib = qq ;
qq = rr ;

}
This code is used in section 46.

50. OK, now the hard work is done and we can reap the benefits of the basic qunite routine. One easy
application enqueues a new arc in O(1) amortized time.

⟨Priority queue subroutines 24 ⟩ +≡
qenque (h, a)

Arc ∗h; /∗ header of a binomial queue ∗/
Arc ∗a; /∗ new element for that queue ∗/

{ long m;

o,m = h⃗ qcount ;
o, h⃗ qcount = m+ 1;
if (m ≡ 0) o, h⃗ qsib = a;
else o, qunite (1L, a,m, h⃗ qsib , h);

}

§51 MILES SPAN BINOMIAL QUEUES 27

51. Here, similarly, is a routine that merges one binomial queue into another. The amortized running time
is proportional to the logarithm of the number of nodes in the smaller queue.

⟨Priority queue subroutines 24 ⟩ +≡
qmerge (h, hh)

Arc ∗h; /∗ header of binomial queue that will receive the result ∗/
Arc ∗hh ; /∗ header of binomial queue that will be absorbed ∗/

{ long m, mm ;

o,mm = hh⃗qcount ;
if (mm) {

o,m = h⃗ qcount ;
o, h⃗ qcount = m+mm ;
if (m ≥ mm) oo , qunite (mm , hh⃗qsib ,m, h⃗ qsib , h);
else if (m ≡ 0) oo , h⃗ qsib = hh⃗qsib ;
else oo , qunite (m, h⃗ qsib ,mm , hh⃗qsib , h);

}
}

52. The other important operation is, of course, deletion of a node with the smallest key. The amortized
running time is proportional to the logarithm of the queue size.

⟨Priority queue subroutines 24 ⟩ +≡
Arc ∗qdel min (h)

Arc ∗h; /∗ header of binomial queue ∗/
{ register Arc ∗p, ∗pp ; /∗ current node and its predecessor ∗/
register Arc ∗q, ∗qq ; /∗ current minimum node and its predecessor ∗/
register long key ; /∗ q⃗ len , the smallest key known so far ∗/
long m; /∗ number of nodes in the queue ∗/
long k; /∗ number of nodes in tree q ∗/
register long mm ; /∗ number of nodes not yet considered ∗/
o,m = h⃗ qcount ;
if (m ≡ 0) return Λ;
o, h⃗ qcount = m− 1;
⟨Find and remove a tree whose root q has the smallest key 53 ⟩;
if (k > 2) {

if (k + k ≤ m) oo , qunite (k − 1, q⃗ qchild⃗qsib ,m− k, h⃗ qsib , h);
else oo , qunite (m− k, h⃗ qsib , k − 1, q⃗ qchild⃗qsib , h);

} else if (k ≡ 2) o, qunite (1L, q⃗ qchild ,m− k, h⃗ qsib , h);
return q;

}

28 BINOMIAL QUEUES MILES SPAN §53

53. If the tree with smallest key is the largest in the forest, we don’t have to change any links to remove
it, because our binomial queue algorithms never look at the last qsib pointer.
We use a well-known binary number trick: m&(m− 1) is the same as m, except that the least significant

1 bit is deleted.

⟨Find and remove a tree whose root q has the smallest key 53 ⟩ ≡
mm = m& (m− 1);
o, q = h⃗ qsib ;
k = m−mm ;
if (mm) { /∗ there’s more than one tree ∗/
p = q; qq = h;
o, key = q⃗ len ;
do { long t = mm & (mm − 1);

pp = p; o, p = p⃗ qsib ;
if (o, p⃗ len ≤ key) {

q = p; qq = pp ; k = mm − t; key = p⃗ len ;
}
mm = t;

} while (mm);
if (k + k ≤ m) oo , qq⃗qsib = q⃗ qsib ; /∗ remove the tree rooted at q ∗/

}
This code is used in section 52.

54. To complete our implementation, here is an algorithm that traverses a binomial queue, “visiting” each
node exactly once, destroying the queue as it goes. The total number of mems required is about 1.75m.

⟨Priority queue subroutines 24 ⟩ +≡
qtraverse (h, visit)

Arc ∗h; /∗ head of binomial queue to be unraveled ∗/
void (∗visit)(); /∗ procedure to be invoked on each node ∗/

{ register long m; /∗ the number of nodes remaining ∗/
register Arc ∗p, ∗q, ∗r; /∗ current position and neighboring positions ∗/
o,m = h⃗ qcount ;
p = h;
while (m) {

o, p = p⃗ qsib ;
(∗visit)(p);
if (m& 1) m−−;
else {
o, q = p⃗ qchild ;
if (m& 2) (∗visit)(q);
else {

o, r = q⃗ qsib ;
if (m& (m− 1)) oo , q⃗ qsib = p⃗ qsib ;
(∗visit)(r);
p = r;

}
m −= 2;

}
}

}

§55 MILES SPAN CHERITON, TARJAN, AND KARP’S ALGORITHM 29

55. Cheriton, Tarjan, and Karp’s algorithm. The final algorithm we shall consider takes yet another
approach to spanning tree minimization. It operates in two distinct stages: Stage 1 creates small fragments
of the minimum tree, working locally with the edges that lead out of each fragment instead of dealing with
the full set of edges at once as in Kruskal’s method. As soon as the number of component fragments has
been reduced from n to ⌊

√
n ⌋, stage 2 begins. Stage 2 runs through the remaining edges and builds a

⌊
√
n ⌋ × ⌊

√
n ⌋ matrix, which represents the problem of finding a minimum spanning tree on the remaining

⌊
√
n ⌋ components. A simple O(

√
n)2 = O(n) algorithm then completes the job.

The philosophy underlying stage 1 is that an edge leading out of a vertex in a small component is likely
to lead to a vertex in another component, rather than in the same one. Thus each delete-min operation
tends to be productive. Karp and Tarjan proved [Journal of Algorithms 1 (1980), 374–393] that the average
running time on a random graph with n vertices and m edges will be O(m).

The philosophy underlying stage 2 is that the problem on an initially sparse graph eventually reduces to
a problem on a smaller but dense graph that is best solved by a different method.

⟨Subroutines 7 ⟩ +≡
unsigned long cher tar kar (g)

Graph ∗g;
{ ⟨Local variables for cher tar kar 56 ⟩
mems = 0;
⟨Do stage 1 of cher tar kar 58 ⟩;
if (verbose) printf ("␣␣␣␣[Stage␣1␣has␣used␣%ld␣mems]\n",mems);
⟨Do stage 2 of cher tar kar 64 ⟩;
return tot len ;

}

56. We say that a fragment is large if it contains ⌊
√
n+ 1 + 1

2⌋ or more vertices. As soon as a fragment
becomes large, stage 1 stops trying to extend it. There cannot be more than ⌊

√
n ⌋ large fragments, because

(⌊
√
n ⌋+ 1)⌊

√
n+ 1 + 1

2⌋ > n. The other fragments are called small.
Stage 1 keeps a list of all the small fragments. Initially this list contains n fragments consisting of one

vertex each. The algorithm repeatedly looks at the first fragment on its list, and finds the smallest edge
leading to another fragment. These two fragments are removed from the list and combined. The resulting
fragment is put at the end of the list if it is still small, or put onto another list if it is large.

⟨Local variables for cher tar kar 56 ⟩ ≡
register Vertex ∗s, ∗t; /∗ beginning and end of the small list ∗/
Vertex ∗large list ; /∗ beginning of the list of large fragments ∗/
long frags ; /∗ current number of fragments, large and small ∗/
unsigned long tot len = 0; /∗ total length of all edges in fragments ∗/
register Vertex ∗u, ∗v; /∗ registers for list manipulation ∗/
register Arc ∗a; /∗ and another ∗/
register long j, k; /∗ index registers for stage 2 ∗/

See also section 61.

This code is used in section 55.

57. We need to make lo sqrt global so that the note edge procedure below can access it.

⟨Global variables 3 ⟩ +≡
long lo sqrt , hi sqrt ; /∗ ⌊

√
n ⌋ and ⌊

√
n+ 1 + 1

2⌋ ∗/

30 CHERITON, TARJAN, AND KARP’S ALGORITHM MILES SPAN §58

58. There is a nonobvious way to compute ⌊
√
n+ 1 + 1

2⌋ and ⌊
√
n ⌋. Since

√
n is small and arithmetic is

mem-free, the author couldn’t resist writing the for loop shown here. Of course, different ground rules for
counting mems would be appropriate if this sort of computing were a critical factor in the running time.

⟨Do stage 1 of cher tar kar 58 ⟩ ≡
o, frags = g⃗ n;
for (hi sqrt = 1; hi sqrt ∗ (hi sqrt + 1) ≤ frags ; hi sqrt ++) ;
if (hi sqrt ∗ hi sqrt ≤ frags) lo sqrt = hi sqrt ;
else lo sqrt = hi sqrt − 1;
large list = Λ;
⟨Create the small list 59 ⟩;
while (frags > lo sqrt) {
⟨Combine the first fragment on the small list with its nearest neighbor 60 ⟩;
frags−−;

}
This code is used in section 55.

59. To represent fragments, we will use several utility fields already defined above. The lsib and rsib
pointers are used between fragments in the small list, which is doubly linked; s points to the first small
fragment, s⃗ rsib to the next, . . . , t⃗ lsib to the second-from-last, and t to the last. The pointer fields s⃗ lsib
and t⃗ rsib are undefined. The large list is singly linked via rsib pointers, terminating with Λ.

The csize field of each fragment tells how many vertices it contains.
The comp field of each vertex is Λ if this vertex represents a fragment (i.e., if this vertex is in the small

list or large list); otherwise it points to another vertex that is closer to the fragment representative.
Finally, the pq pointer of each fragment points to the header node of its priority queue, which is a binomial

queue containing all unlooked-at arcs that originate from vertices in the fragment. This pointer is identical
to the newarc pointer already set up. In a production implementation, we wouldn’t need pq as a separate
field; it would be part of a vertex record. So we do not pay any mems for referring to it.

#define pq newarc

⟨Create the small list 59 ⟩ ≡
o, s = g⃗ vertices ;
for (v = s; v < s+ frags ; v++) {
if (v > s) {

o, v⃗ lsib = v − 1; o, (v − 1)⃗ rsib = v;
}
o, v⃗ comp = Λ;
o, v⃗ csize = 1;
o, v⃗ pq⃗qcount = 0; /∗ the binomial queue is initially empty ∗/
for (o, a = v⃗ arcs ; a; o, a = a⃗ next) qenque (v⃗ pq , a);

}
t = v − 1;

This code is used in section 58.

§60 MILES SPAN CHERITON, TARJAN, AND KARP’S ALGORITHM 31

60. ⟨Combine the first fragment on the small list with its nearest neighbor 60 ⟩ ≡
v = s;
o, s = s⃗ rsib ; /∗ remove v from small list ∗/
do {
a = qdel min (v⃗ pq);
if (a ≡ Λ) return INFINITY; /∗ the graph isn’t connected ∗/
o, u = a⃗ tip ;
while (o, u⃗ comp) u = u⃗ comp ; /∗ find the fragment pointed to ∗/

} while (u ≡ v); /∗ repeat until a new fragment is found ∗/
if (verbose) ⟨Report the new edge verbosely 63 ⟩;
o, tot len += a⃗ len ;
o, v⃗ comp = u;
qmerge (u⃗ pq , v⃗ pq);
o, old size = u⃗ csize ;
o,new size = old size + v⃗ csize ;
o, u⃗ csize = new size ;
⟨Move u to the proper list position 62 ⟩;

This code is used in section 58.

61. ⟨Local variables for cher tar kar 56 ⟩ +≡
long old size , new size ; /∗ size of fragment u, before and after ∗/

62. Here is a fussy part of the program. We have just merged the small fragment v into another fragment u.
If u was already large, there’s nothing to do (except to check if the small list has just become empty).
Otherwise we need to move u to the end of the small list, or we need to put it onto the large list. All these
cases are special, if we want to avoid unnecessary memory references; so let’s hope we get them right.

⟨Move u to the proper list position 62 ⟩ ≡
if (old size ≥ hi sqrt) { /∗ u was large ∗/
if (t ≡ v) s = Λ; /∗ small list just became empty ∗/

} else if (new size < hi sqrt) { /∗ u was and still is small ∗/
if (u ≡ t) goto fin ; /∗ u is already where we want it ∗/
if (u ≡ s) o, s = u⃗ rsib ; /∗ remove u from front ∗/
else {
ooo , u⃗ rsib⃗ lsib = u⃗ lsib ; /∗ detach u from middle ∗/
o, u⃗ lsib⃗ rsib = u⃗ rsib ; /∗ do you follow the mem-counting here? ∗/

}
o, t⃗ rsib = u; /∗ insert u at the end ∗/
o, u⃗ lsib = t;
t = u;

} else { /∗ u has just become large ∗/
if (u ≡ t) {

if (u ≡ s) goto fin ; /∗ well, keep it small, we’re done anyway ∗/
o, t = u⃗ lsib ; /∗ remove u from end ∗/

} else if (u ≡ s) o, s = u⃗ rsib ; /∗ remove u from front ∗/
else {
ooo , u⃗ rsib⃗ lsib = u⃗ lsib ; /∗ detach u from middle ∗/
o, u⃗ lsib⃗ rsib = u⃗ rsib ;

}
o, u⃗ rsib = large list ; large list = u; /∗ make u large ∗/

}
fin : ;

This code is used in section 60.

32 CHERITON, TARJAN, AND KARP’S ALGORITHM MILES SPAN §63

63. We don’t have room in our binomial queues to keep track of both endpoints of the arcs. But the arcs
occur in pairs, and by looking at the address of a we can tell whether the matching arc is a + 1 or a − 1.
(See the explanation in GB GRAPH.)

⟨Report the new edge verbosely 63 ⟩ ≡
report ((edge trick & (siz t) a ? a− 1 : a+ 1)⃗ tip , a⃗ tip , a⃗ len);

This code is used in sections 60 and 70.

§64 MILES SPAN CHERITON, TARJAN, AND KARP’S ALGORITHM (CONTINUED) 33

64. Cheriton, Tarjan, and Karp’s algorithm (continued). And now for the second part of the
algorithm. Here we need to find room for a ⌊

√
n ⌋× ⌊

√
n ⌋ matrix of edge lengths; we will use random access

into the z utility fields of vertex records, since these haven’t been used for anything yet by cher tar kar . We
can also use the v utility fields to record the arcs that are the source of the best lengths, since this was the
lsib field (no longer needed). The program doesn’t count mems for updating that field, since it considers
its goal to be simply the calculation of minimum spanning tree length; the actual edges of the minimum
spanning tree are computed only for verbose mode. (We want to see how competitive cher tar kar is when
we streamline it as much as possible.)
In stage 2, the vertices will be assigned integer index numbers between 0 and ⌊

√
n ⌋ − 1. We’ll put this

into the csize field, which is no longer needed, and call it findex .

#define findex csize
#define matx (j, k) (gv + ((j) ∗ lo sqrt + (k)))⃗ z.I /∗ distance between fragments j and k ∗/
#define matx arc(j, k) (gv + ((j) ∗ lo sqrt + (k)))⃗ v.A /∗ arc corresponding to matx (j, k) ∗/
#define INF 30000 /∗ upper bound on all edge lengths ∗/
⟨Do stage 2 of cher tar kar 64 ⟩ ≡
gv = g⃗ vertices ; /∗ the global variable gv helps access auxiliary memory ∗/
⟨Map all vertices to their index numbers 65 ⟩;
⟨Create the reduced matrix by running through all remaining edges 66 ⟩;
⟨Execute Prim’s algorithm on the reduced matrix 69 ⟩;

This code is used in section 55.

65. The vertex-mapping algorithm is O(n) because each non-null comp link is examined at most three
times. We set the comp field to null as an indication that findex has been set.

⟨Map all vertices to their index numbers 65 ⟩ ≡
if (s ≡ Λ) s = large list ;
else o, t⃗ rsib = large list ;
for (k = 0, v = s; v; o, v = v⃗ rsib , k++) o, v⃗ findex = k;
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++)
if (o, v⃗ comp) {

for (t = v⃗ comp ; o, t⃗ comp ; t = t⃗ comp) ;
o, k = t⃗ findex ;
for (t = v; o, u = t⃗ comp ; t = u) {
o, t⃗ comp = Λ;
o, t⃗ findex = k;

}
}

This code is used in section 64.

66. ⟨Create the reduced matrix by running through all remaining edges 66 ⟩ ≡
for (j = 0; j < lo sqrt ; j++)
for (k = 0; k < lo sqrt ; k++) o,matx (j, k) = INF;

for (kk = 0; s; o, s = s⃗ rsib , kk ++) qtraverse (s⃗ pq ,note edge);

This code is used in section 64.

34 CHERITON, TARJAN, AND KARP’S ALGORITHM (CONTINUED) MILES SPAN §67

67. The note edge procedure “visits” every edge in the binomial queues traversed by qtraverse in the
preceding code. Global variable kk , which would be a global register in a production version, is the index of
the fragment from which this arc emanates.

⟨Procedures to be declared early 67 ⟩ ≡
void note edge (a)

Arc ∗a;
{ register long k;

oo , k = a⃗ tip⃗ findex ;
if (k ≡ kk) return;
if (oo , a⃗ len < matx (kk , k)) {

o,matx (kk , k) = a⃗ len ;
o,matx (k, kk) = a⃗ len ;
matx arc(kk , k) = matx arc(k, kk) = a;

}
}

This code is used in section 2.

68. As we work on the final subproblem of size ⌊
√
n ⌋ × ⌊

√
n ⌋, we’ll have a short vector that tells us the

distance to each fragment that hasn’t yet been joined up with fragment 0. The vector has −1 in positions
that already have been joined up. In a production version, we could keep this in row 0 of matx .

⟨Global variables 3 ⟩ +≡
long kk ; /∗ current fragment ∗/
long distance [100]; /∗ distances to at most ⌊

√
n ⌋ unhit fragments ∗/

Arc ∗dist arc [100]; /∗ the corresponding arcs, for verbose mode ∗/

69. The last step, as suggested by Prim, repeatedly updates the distance table against each row of the
matrix as it is encountered. This is the algorithm of choice to find the minimum spanning tree of a complete
graph.

⟨Execute Prim’s algorithm on the reduced matrix 69 ⟩ ≡
{ long d; /∗ shortest entry seen so far in distance vector ∗/
o, distance [0] = −1;
d = INF;
for (k = 1; k < lo sqrt ; k++) {

o, distance [k] = matx (0, k);
dist arc [k] = matx arc(0, k);
if (distance [k] < d) d = distance [k], j = k;

}
while (frags > 1) ⟨Connect fragment 0 with fragment j, since j is the column achieving the smallest

distance, d; also compute j and d for the next round 70 ⟩;
}

This code is used in section 64.

§70 MILES SPAN CHERITON, TARJAN, AND KARP’S ALGORITHM (CONTINUED) 35

70. ⟨Connect fragment 0 with fragment j, since j is the column achieving the smallest distance, d; also
compute j and d for the next round 70 ⟩ ≡

{
if (d ≡ INF) return INFINITY; /∗ the graph isn’t connected ∗/
o, distance [j] = −1; /∗ fragment j now will join up with fragment 0 ∗/
tot len += d;
if (verbose) {

a = dist arc [j];
⟨Report the new edge verbosely 63 ⟩;

}
frags−−;
d = INF;
for (k = 1; k < lo sqrt ; k++)
if (o, distance [k] ≥ 0) {
if (o,matx (j, k) < distance [k]) {
o, distance [k] = matx (j, k);
dist arc [k] = matx arc(j, k);

}
if (distance [k] < d) d = distance [k], kk = k;

}
j = kk ;

}
This code is used in section 69.

36 CONCLUSIONS MILES SPAN §71

71. Conclusions. The winning algorithm, of the four methods considered here, on problems of the size
considered here, with respect to mem counting, is clearly Jarńık/Prim with binary heaps. Second is Kruskal
with radix sorting, on sparse graphs, but the Fibonacci heap method beats it on dense graphs. Procedure
cher tar kar never comes close, although every step it takes seems to be reasonably sensible and efficient,
and although the implementation above gives it the benefit of every doubt when counting its mems. It
apparently loses because it more or less gives up a factor of 2 by dealing with each edge twice; the other
methods put very little effort into discarding an arc whose mate has already been processed.
But it is important to realize that mem counting is not the whole story. Further tests were made on a

Sun SPARCstation 2, in order to measure the true running times when all the complications of pipelining,
caching, and compiler optimization are taken into account. These runs showed that Kruskal’s algorithm was
actually best, at least on the particular system tested:

optimization level −g −O2 −O3 mems

Kruskal/radix 132 111 111 8379
Jarńık/Prim/binary 307 226 212 7972
Jarńık/Prim/Fibonacci 432 350 333 11736
Cheriton/Tarjan/Karp 686 509 492 17770

(Times are shown in seconds per 100,000 runs with the default graph miles (100, 0, 0, 0, 0, 10, 0). Optimization
level −O4 gave the same results as −O3. Optimization does not change the mem count.) Thus the Kruskal
procedure used only about 160 nanoseconds per mem, without optimization, and about 130 with; the others
used about 380 to 400 ns/mem without optimization, 270 to 300 with. The mem measure gave consistent
readings for the three “sophisticated” data structures, but the “näıve” Kruskal method blended better
with hardware. The complete graph miles (100, 0, 0, 0, 0, 99, 0), obtained by specifying option −d100, gave
somewhat different statistics:

optimization level −g −O2 −O3 mems

Kruskal/radix 1846 1787 1810 63795
Jarńık/Prim/binary 2246 1958 1845 50594
Jarńık/Prim/Fibonacci 2675 2377 2248 59050
Cheriton/Tarjan/Karp 8881 6964 6909 175519

Now the identical machine instructions took significantly longer per mem—presumably because of cache
misses, although the frequency of conditional jump instructions might also be a factor. Careful analyses of
these phenomena should be instructive. Future computers are expected to be more nearly limited by memory
speed; therefore the running time per mem is likely to become more uniform between methods, although
cache performance will probably always be a factor.
The krusk procedure might go even faster if it were given a streamlined union/find algorithm. Or would

such “streamlining” negate some of its present efficiency?

§72 MILES SPAN INDEX 37

72. Index. We close with a list that shows where the identifiers of this program are defined and used.
A special index term, ‘discussion of mems ’, indicates sections where there are nontrivial comments about
instrumenting a C program in the manner being recommended here.

a: 15, 22, 50, 56, 67.
aa : 12, 32.
Arc: 12, 13, 15, 22, 32, 43, 45, 46, 50, 51, 52,

54, 56, 67, 68.
arcs : 9, 12, 22, 59.
argc : 2, 4.
argv : 2, 4.
aucket : 12, 13.
aux data : 32.
backlink : 19, 20, 21, 22, 32.
Bentley, Jon Louis: 10.
Bor̊uvka, Otakar: 1.
bucket : 12, 13, 14.
c: 46.
cher tar kar : 5, 55, 64, 71.
Cheriton, David Ross: 5.
child : 30, 32, 33, 35, 38, 40.
clink : 16, 17, 18.
comp : 16, 17, 18, 59, 60, 65.
components : 14, 15, 17.
csize : 16, 17, 18, 59, 60, 64.
d: 2, 24, 25, 26, 27, 30, 33, 34, 41, 69.
del F heap : 38, 42.
del heap : 27, 28.
del min : 19, 20, 28, 37, 42, 46.
Dijkstra, Edsger Wybe: 19.
discussion of mems : 10, 11, 17, 18, 21, 24, 32,

58, 59, 62, 64, 71.
dist : 19, 20, 22, 25, 26, 27, 32, 33, 34, 36,

39, 40, 41, 45.
dist arc : 68, 69, 70.
distance : 68, 69, 70.
done : 5, 32.
edge trick : 63.
enq F heap : 33, 42.
enq heap : 25, 28.
enqueue : 19, 22, 28, 42.
F heap : 30, 31, 33, 34, 36, 37, 38, 41.
Fibonacci, Leonardo, heaps: 29.
file name : 2, 4.
fin : 62.
final v : 38.
findex : 64, 65, 67.
fprintf : 2, 4.
fragment size : 20, 21.
frags : 56, 58, 59, 69, 70.
Fredman, Michael Lawrence: 29.
from : 12, 14.
g: 3, 14, 20, 55.

gb recycle : 2.
gb trouble code : 5.
gb typed alloc : 32.
Graham, Ronald Lewis: 1.
Graph: 3, 14, 20, 55.
gv : 23, 24, 64.
h: 38, 45, 50, 51, 52, 54.
heap elt : 23, 25, 26, 27.
heap index : 23, 25, 26, 27.
Hell, Pavol: 1.
hh : 51.
hi sqrt : 57, 58, 62.
hsize : 23, 24, 25, 27.
id : 5.
INF: 64, 66, 69, 70.
INFINITY: 5, 14, 20, 60, 70.
init F heap : 30, 42.
init heap : 24, 28.
init queue : 19, 21, 28, 42.
j: 25, 26, 27, 56.
jar pr : 5, 20, 23, 24, 28, 42.
Jarńık, Vojtĕch: 1.
k: 25, 26, 27, 45, 52, 56, 67.
Karp, Richard Manning: 5, 55.
Kerschenbaum, A.: 23.
key : 46, 47, 48, 49, 52, 53.
kk : 66, 67, 68, 70.
klink : 12, 14.
KNOWN: 20, 21, 22.
Knuth, Donald Ervin: 16.
Knuth, Nancy Jill Carter: 43.
krusk : 5, 14, 16, 17, 71.
Kruskal, Joseph Bernard: 1.
l: 7, 15.
large list : 56, 58, 59, 62, 65.
len : 10, 12, 14, 22, 45, 46, 47, 48, 49, 52, 53,

60, 63, 67.
ll : 12.
lo sqrt : 57, 58, 64, 66, 69, 70.
lsib : 30, 32, 33, 35, 36, 40, 41, 59, 62, 64.
m: 45, 50, 51, 52, 54.
main : 2, 24.
matx : 64, 66, 67, 68, 69, 70.
matx arc : 64, 67, 69, 70.
max degree : 2.
mems : 5, 7, 10, 14, 20, 55.
miles : 2, 9, 71.
mm : 45, 46, 49, 51, 52, 53.
n: 2, 15.

38 INDEX MILES SPAN §72

n weight : 2, 4.
name : 7.
new roots : 37, 38, 39, 41.
new size : 60, 61, 62.
newarc : 32, 59.
next : 12, 22, 59.
north weight : 2, 9.
note edge : 57, 66, 67.
o: 10.
old size : 60, 61, 62.
oo : 10, 11, 12, 16, 17, 18, 21, 22, 25, 26, 33, 36,

38, 39, 40, 47, 48, 49, 51, 52, 53, 54, 67.
ooo : 10, 62.
oooo : 10, 27.
p: 34, 45, 52, 54.
p weight : 2, 4.
panic code : 2.
parent : 30, 32, 33, 34, 36, 38, 40.
pop weight : 2, 9.
pp : 34, 52, 53.
pq : 59, 60, 66.
Prim, Robert Clay: 8, 69.
printf : 5, 7, 14, 28, 32, 42, 55.
q: 45, 52, 54.
qchild : 43, 44, 47, 48, 49, 52, 54.
qcount : 44, 50, 51, 52, 54, 59.
qdel min : 52, 60.
qenque : 50, 59.
qmerge : 51, 60.
qq : 45, 46, 47, 49, 52, 53.
qsib : 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54.
qtraverse : 54, 66, 67.
qunite : 45, 50, 51, 52.
r: 2, 34, 38, 46, 54.
rank tag : 32, 33, 34, 38, 39.
report : 7, 14, 20, 63.
req F heap : 34, 42.
req heap : 26, 28.
requeue : 19, 22, 28, 42.
restore graph : 2.
rr : 46, 48, 49.
rsib : 30, 32, 33, 35, 36, 38, 40, 41, 59, 60,

62, 65, 66.
s: 2, 56.
save graph : 2.
Schönhage, Arnold: 16.
seed : 2.
siz t: 63.
sp length : 5, 6, 28, 42.
sscanf : 4.
stderr : 2, 4.
strcmp : 4.

strncmp : 4.
t: 20, 38, 53, 56.
Tarjan, Robert Endre: 5, 29, 55.
tip : 12, 14, 22, 32, 60, 63, 67.
tot len : 14, 15, 20, 55, 56, 60, 70.
u: 7, 15, 25, 26, 27, 33, 34, 38, 56.
UNIX dependencies: 2, 4.
uu : 32.
v: 7, 15, 22, 25, 26, 27, 33, 34, 38, 56.
Van Slyke, Richard Maurice: 23.
verbose : 4, 7, 14, 20, 55, 60, 64, 68, 70.
Vertex: 7, 15, 19, 20, 22, 23, 25, 26, 27, 31,

32, 33, 34, 37, 38, 56.
vertices : 9, 12, 17, 21, 23, 24, 32, 59, 64, 65.
visit : 54.
Vuillemin, Jean Etienne: 43.
w: 15, 34, 38.
w weight : 2, 4.
west weight : 2, 9.
Williams, John William Joseph: 23.
x coord : 9.
y coord : 9.

MILES SPAN NAMES OF THE SECTIONS 39

⟨Allocate additional space needed by the more complex algorithms; or goto done if there isn’t enough
room 32 ⟩ Used in section 5.

⟨Combine the first fragment on the small list with its nearest neighbor 60 ⟩ Used in section 58.

⟨Combine q and qq into a “carry” tree, and continue merging until the carry no longer propagates 46 ⟩
Used in section 45.

⟨Connect fragment 0 with fragment j, since j is the column achieving the smallest distance, d; also compute
j and d for the next round 70 ⟩ Used in section 69.

⟨Create the reduced matrix by running through all remaining edges 66 ⟩ Used in section 64.

⟨Create the small list 59 ⟩ Used in section 58.

⟨Do stage 1 of cher tar kar 58 ⟩ Used in section 55.

⟨Do stage 2 of cher tar kar 64 ⟩ Used in section 55.

⟨Execute Prim’s algorithm on the reduced matrix 69 ⟩ Used in section 64.

⟨Execute jar pr (g) with Fibonacci heaps as the priority queue algorithm 42 ⟩ Used in section 5.

⟨Execute jar pr (g) with binary heaps as the priority queue algorithm 28 ⟩ Used in section 5.

⟨Find and remove a tree whose root q has the smallest key 53 ⟩ Used in section 52.

⟨Global variables 3, 6, 10, 13, 19, 23, 31, 37, 57, 68 ⟩ Used in section 2.

⟨ If u and v are already in the same component, continue 16 ⟩ Used in section 14.

⟨ Insert v into the forest 36 ⟩ Used in section 34.

⟨Local variables for cher tar kar 56, 61 ⟩ Used in section 55.

⟨Local variables for krusk 15 ⟩ Used in section 14.

⟨Make t = g⃗ vertices the only vertex seen; also make it known 21 ⟩ Used in section 20.

⟨Make u a child of v 40 ⟩ Used in section 39.

⟨Map all vertices to their index numbers 65 ⟩ Used in section 64.

⟨Merge the components containing u and v 18 ⟩ Used in section 14.

⟨Merge qq into c and advance qq 49 ⟩ Used in section 46.

⟨Merge q into c and advance q 48 ⟩ Used in section 46.

⟨Move u to the proper list position 62 ⟩ Used in section 60.

⟨Priority queue subroutines 24, 25, 26, 27, 30, 33, 34, 38, 45, 50, 51, 52, 54 ⟩ Used in section 2.

⟨Procedures to be declared early 67 ⟩ Used in section 2.

⟨Put all the edges into bucket [0] through bucket [63] 12 ⟩ Used in section 14.

⟨Put all the vertices into components by themselves 17 ⟩ Used in section 14.

⟨Put all unseen vertices adjacent to t into the queue, and update the distances of the other vertices adjacent
to t 22 ⟩ Used in section 20.

⟨Put the tree rooted at v into the new roots forest 39 ⟩ Used in section 38.

⟨Rebuild F heap from new roots 41 ⟩ Used in section 38.

⟨Remove v from its family 35 ⟩ Used in section 34.

⟨Report the new edge verbosely 63 ⟩ Used in sections 60 and 70.

⟨Report the number of mems needed to compute a minimum spanning tree of g by various algorithms 5 ⟩
Used in section 2.

⟨Scan the command-line options 4 ⟩ Used in section 2.

⟨Set c to the combination of q and qq 47 ⟩ Used in section 46.

⟨Subroutines 7, 14, 20, 55 ⟩ Used in section 2.

May 19, 2018 at 02:30

MILES SPAN
Section Page

Minimum spanning trees . 1 1
Strategies and ground rules . 8 5
Kruskal’s algorithm . 12 7
Jarńık and Prim’s algorithm . 19 10
Binary heaps . 23 12
Fibonacci heaps . 29 16
Binomial queues . 43 23
Cheriton, Tarjan, and Karp’s algorithm . 55 29
Cheriton, Tarjan, and Karp’s algorithm (continued) . 64 33
Conclusions . 71 36
Index . 72 37

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

