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Important: Before reading ROGET COMPONENTS, please read or at least skim the program for GB ROGET.

1. Strong components. This demonstration program computes the strong components of GraphBase
graphs derived from Roget’s Thesaurus, using a variant of Tarjan’s algorithm [R. E. Tarjan, “Depth-first
search and linear graph algorithms,” SIAM Journal on Computing 1 (1972), 146–160]. We also determine
the relationships between strong components.
Two vertices belong to the same strong component if and only if they are reachable from each other via

directed paths.
We will print the strong components in “reverse topological order”; that is, if v is reachable from u but

u is not reachable from v, the strong component containing v will be listed before the strong component
containing u.
Vertices from the roget graph are identified both by name and by category number.

#define specs (v) (filename ? v − g⃗ vertices + 1L : v⃗ cat no), v⃗ name
/∗ category number and category name ∗/

2. We permit command-line options in UNIX style so that a variety of graphs can be studied: The user
can say ‘−n⟨number⟩’, ‘−d⟨number⟩’, ‘−p⟨number⟩’, and/or ‘−s⟨number⟩’ to change the default values of the
parameters in the graph roget (n, d, p, s). Or ‘−g⟨filename⟩’ to change the graph itself.

#include "gb_graph.h" /∗ the GraphBase data structures ∗/
#include "gb_roget.h" /∗ the roget routine ∗/
#include "gb_save.h" /∗ restore graph ∗/

⟨Preprocessor definitions ⟩
⟨Global variables 5 ⟩
main (argc , argv )

int argc ; /∗ the number of command-line arguments ∗/
char ∗argv [ ]; /∗ an array of strings containing those arguments ∗/

{ Graph ∗g; /∗ the graph we will work on ∗/
register Vertex ∗v; /∗ the current vertex of interest ∗/
unsigned long n = 0; /∗ the desired number of vertices (0 means infinity) ∗/
unsigned long d = 0; /∗ the minimum distance between categories in arcs ∗/
unsigned long p = 0; /∗ 65536 times the probability of rejecting an arc ∗/
long s = 0; /∗ the random number seed ∗/
char ∗filename = Λ; /∗ external graph substituted for roget ∗/
⟨Scan the command-line options 3 ⟩;
g = (filename ? restore graph (filename ) : roget (n, d, p, s));
if (g ≡ Λ) {
fprintf (stderr , "Sorry,␣can’t␣create␣the␣graph!␣(error␣code␣%ld)\n", panic code );
return −1;

}
printf ("Reachability␣analysis␣of␣%s\n\n", g⃗ id );
⟨Perform Tarjan’s algorithm on g 10 ⟩;
return 0; /∗ normal exit ∗/

}
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3. ⟨Scan the command-line options 3 ⟩ ≡
while (−−argc) {
if (sscanf (argv [argc ], "−n%lu",&n) ≡ 1) ;
else if (sscanf (argv [argc ], "−d%lu",&d) ≡ 1) ;
else if (sscanf (argv [argc ], "−p%lu",&p) ≡ 1) ;
else if (sscanf (argv [argc ], "−s%ld",&s) ≡ 1) ;
else if (strncmp(argv [argc ], "−g", 2) ≡ 0) filename = argv [argc ] + 2;
else {
fprintf (stderr , "Usage:␣%s␣[−nN][−dN][−pN][−sN][−gfoo]\n", argv [0]);
return −2;

}
}

This code is used in section 2.

4. Tarjan’s algorithm is inherently recursive. We will implement the recursion explicitly via linked lists,
instead of using C’s runtime stack, because some computer systems bog down in the presence of deeply
nested recursion.
Each vertex goes through three stages during the algorithm: First it is “unseen”; then it is “active”; finally

it becomes “settled,” when it has been assigned to a strong component.
The data structures that represent the current state of the algorithm are implemented by using five of the

utility fields in each vertex: rank , parent , untagged , link , and min . We will consider each of these in turn.

5. First is the integer rank field, which is zero when a vertex is unseen. As soon as the vertex is first
examined, it becomes active and its rank becomes and remains nonzero. Indeed, the kth vertex to become
active will receive rank k. When a vertex finally becomes settled, its rank is reset to infinity.
It’s convenient to think of Tarjan’s algorithm as a simple adventure game in which we want to explore all

the rooms of a cave. Passageways between the rooms allow one-way travel only. When we come into a room
for the first time, we assign a new number to that room; this is its rank. Later on we might happen to enter
the same room again, and we will notice that it has nonzero rank. Then we’ll be able to make a quick exit,
saying “we’ve already been here.” (The extra complexities of computer games, like dragons that might need
to be vanquished, do not arise.)

#define rank z.I /∗ the rank of a vertex is stored in utility field z ∗/
⟨Global variables 5 ⟩ ≡

long nn ; /∗ the number of vertices that have been seen ∗/
See also sections 8 and 11.

This code is used in section 2.

6. The active vertices will always form an oriented tree, whose arcs are a subset of the arcs in the original
graph. A tree arc from u to v will be represented by v⃗ parent ≡ u. Every active vertex has a parent, which
is usually another active vertex; the only exception is the root of the tree, whose parent is Λ.

In the cave analogy, the “parent” of room v is the room we were in immediately before entering v the first
time. By following parent pointers, we will be able to leave the cave whenever we want.
As soon as a vertex becomes settled, its parent field changes significance. Then v⃗ parent is set equal to

the unique representative of the strong component containing vertex v. Thus two settled vertices will belong
to the same strong component if and only if they have the same parent .

#define parent y.V /∗ the parent of a vertex is stored in utility field y ∗/
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7. All arcs in the original directed graph are explored systematically during a depth-first search. Whenever
we look at an arc, we tag it so that we won’t need to explore it again. In a cave, for example, we might
mark each passageway between rooms once we’ve tried to go through it.
The algorithm doesn’t actually place a tag on its Arc records; instead, each vertex v has a pointer

v⃗ untagged that leads to all hitherto-unexplored arcs from v. The arcs of the list that appear between
v⃗ arcs and v⃗ untagged are the ones already examined.

#define untagged x.A /∗ the untagged field points to an Arc record, or Λ ∗/

8. The algorithm maintains two special stacks: active stack contains all the currently active vertices, and
settled stack contains all the currently settled vertices. Each vertex has a link field that points to the vertex
that is next lower on its stack, or to Λ if the vertex is at the bottom. The vertices on active stack always
appear in increasing order of rank from bottom to top.

#define link w.V /∗ the link field of a vertex occupies utility field w ∗/
⟨Global variables 5 ⟩ +≡
Vertex ∗active stack ; /∗ the top of the stack of active vertices ∗/
Vertex ∗settled stack ; /∗ the top of the stack of settled vertices ∗/

9. Finally there’s a min field, which is the tricky part that makes everything work. If vertex v is unseen or
settled, its min field is irrelevant. Otherwise v⃗ min points to the active vertex u of smallest rank having the
following property: Either u ≡ v or there is a directed path from v to u consisting of zero or more mature
tree arcs followed by a single non-tree arc.
What is a tree arc, you ask. And what is a mature arc? Good questions. At the moment when arcs of the

graph are tagged, we classify them either as tree arcs (if they correspond to a new parent link in the tree
of active nodes) or non-tree arcs (otherwise). A tree arc becomes mature when it is no longer on the path
from the root to the current vertex being explored. We also say that a vertex becomes mature when it is no
longer on that path. All arcs from a mature vertex have been tagged.
We said before that every vertex is initially unseen, then active, and finally settled. With our new

definitions, we see further that every arc starts out untagged, then it becomes either a non-tree arc or a tree
arc. In the latter case, the arc begins as an immature tree arc and eventually matures.
Just believe these definitions, for now. All will become clear soon.

#define min v.V /∗ the min field of a vertex occupies utility field v ∗/
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10. Depth-first search explores a graph by systematically visiting all vertices and seeing what they can lead
to. In Tarjan’s algorithm, as we have said, the active vertices form an oriented tree. One of these vertices is
called the current vertex.
If the current vertex still has an arc that hasn’t been tagged, we tag one such arc and there are two cases:

Either the arc leads to an unseen vertex, or it doesn’t. If it does, the arc becomes a tree arc; the previously
unseen vertex becomes active, and it becomes the new current vertex. On the other hand if the arc leads to
a vertex that has already been seen, the arc becomes a non-tree arc and the current vertex doesn’t change.
Finally there will come a time when the current vertex v has no untagged arcs. At this point, the algorithm

might decide that v and all its descendants form a strong component. Indeed, this condition turns out to
be true if and only if v⃗ min ≡ v; a proof appears below. If so, v and all its descendants become settled,
and they leave the tree. If not, the tree arc from v’s parent u to v becomes mature, so the value of v⃗ min is
used to update the value of u⃗ min . In both cases, v becomes mature and the new current vertex will be the
parent of v. Notice that only the value of u⃗ min needs to be updated, when the arc from u to v matures;
all other values w⃗ min stay the same, because a newly mature arc has no mature predecessors.
The cave analogy helps to clarify the situation: If there’s no way out of the subcave starting at v unless

we come back through v itself, and if we can get back to v from all its descendants, then room v and its
descendants will become a strong component. Once such a strong component is identified, we close it off
and don’t explore that subcave any further.
If v is the root of the tree, it always has v⃗ min ≡ v, so it will always define a new strong component at

the moment it matures. Then the depth-first search will terminate, since v has no parent. But Tarjan’s
algorithm will press on, trying to find a vertex u that is still unseen. If such a vertex exists, a new depth-first
search will begin with u as the root. This process keeps on going until at last all vertices are happily settled.
The beauty of this algorithm is that it all works very efficiently when we organize it as follows:

⟨Perform Tarjan’s algorithm on g 10 ⟩ ≡
⟨Make all vertices unseen and all arcs untagged 12 ⟩;
for (vv = g⃗ vertices ; vv < g⃗ vertices + g⃗ n; vv ++)
if (vv⃗rank ≡ 0) /∗ vv is still unseen ∗/
⟨Perform a depth-first search with vv as the root, finding the strong components of all unseen

vertices reachable from vv 13 ⟩;
⟨Print out one representative of each arc that runs between strong components 17 ⟩;

This code is used in section 2.

11. ⟨Global variables 5 ⟩ +≡
Vertex ∗vv ; /∗ sweeps over all vertices, making sure none is left unseen ∗/

12. It’s easy to get the data structures started, according to the conventions stipulated above.

⟨Make all vertices unseen and all arcs untagged 12 ⟩ ≡
for (v = g⃗ vertices + g⃗ n− 1; v ≥ g⃗ vertices ; v−−) {
v⃗ rank = 0;
v⃗ untagged = v⃗ arcs ;

}
nn = 0;
active stack = settled stack = Λ;

This code is used in section 10.
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13. The task of starting a depth-first search isn’t too bad either. Throughout this part of the algorithm,
variable v will point to the current vertex.

⟨Perform a depth-first search with vv as the root, finding the strong components of all unseen vertices
reachable from vv 13 ⟩ ≡

{
v = vv ;
v⃗ parent = Λ;
⟨Make vertex v active 14 ⟩;
do ⟨Explore one step from the current vertex v, possibly moving to another current vertex and

calling it v 15 ⟩ while (v ̸= Λ);
}

This code is used in section 10.

14. ⟨Make vertex v active 14 ⟩ ≡
v⃗ rank = ++nn ;
v⃗ link = active stack ;
active stack = v;
v⃗ min = v;

This code is used in sections 13 and 15.

15. Now things get interesting. But we’re just doing what any well-organized spelunker would do when
calmly exploring a cave. There are three main cases, depending on whether the current vertex stays where
it is, moves to a new child, or backtracks to a parent.

⟨Explore one step from the current vertex v, possibly moving to another current vertex and calling it v 15 ⟩ ≡
{ register Vertex ∗u; /∗ a vertex adjacent to v ∗/
register Arc ∗a = v⃗ untagged ; /∗ v’s first remaining untagged arc, if any ∗/
if (a) {
u = a⃗ tip ;
v⃗ untagged = a⃗ next ; /∗ tag the arc from v to u ∗/
if (u⃗ rank ) { /∗ we’ve seen u already ∗/
if (u⃗ rank < v⃗ min⃗rank ) v⃗ min = u; /∗ non-tree arc, just update v⃗ min ∗/

} else { /∗ u is presently unseen ∗/
u⃗ parent = v; /∗ the arc from v to u is a new tree arc ∗/
v = u; /∗ u will now be the current vertex ∗/
⟨Make vertex v active 14 ⟩;

}
} else { /∗ all arcs from v are tagged, so v matures ∗/

u = v⃗ parent ; /∗ prepare to backtrack in the tree ∗/
if (v⃗ min ≡ v) ⟨Remove v and all its successors on the active stack from the tree, and mark them

as a strong component of the graph 16 ⟩
else /∗ the arc from u to v has just matured, making v⃗ min visible from u ∗/
if (v⃗ min⃗rank < u⃗ min⃗rank ) u⃗ min = v⃗ min ;
v = u; /∗ the former parent of v is the new current vertex v ∗/

}
}

This code is used in section 13.
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16. The elements of the active stack are always in order by rank, and all children of a vertex v in the
tree have rank higher than v. Tarjan’s algorithm relies on a converse property: All active nodes whose rank
exceeds that of the current vertex v are descendants of v. (This property holds because the algorithm has
constructed the tree by assigning ranks in preorder, “the order of succession to the throne.” First come v’s
firstborn and descendants, then the nextborn, and so on.) Therefore the descendants of the current vertex
always appear consecutively at the top of the stack.
Another fundamental property of Tarjan’s algorithm is more subtle: There is always a way to get from

any active vertex to the current vertex. This follows from the fact that all mature active vertices u have
u⃗ min⃗rank < u⃗ rank . If some active vertex does not lead to the current vertex v, let u be the counterexample
with smallest rank. Then u isn’t an ancestor of v, hence u must be mature; hence it leads to the active
vertex u⃗ min , from which there is a path to v, contradicting our assumption.
Therefore v and its active descendants are all reachable from each other, and they must belong to the same

strong component. Moreover, if v⃗ min = v, this component can’t be made any larger. For there is no arc
from any of these vertices to an unseen vertex; all arcs from v and its descendants have already been tagged.
And there is no arc from any of these vertices to an active vertex that is below v on the stack; otherwise
v⃗ min would have smaller rank than v. Hence all arcs, if any, that lead from these vertices to some other
vertex must lead to settled vertices. And we know from previous steps of the computation that the settled
vertices all belong to other strong components.
Therefore we are justified in settling v and its active descendants now. Removing them from the tree of

active vertices does not remove any vertex from which there is a path to a vertex of rank less than v⃗ rank .
Hence their removal does not affect the validity of the u⃗ min value for any vertex u that remains active.

We print out enough information for a reader to verify the strength of the claimed component easily.

#define infinity g⃗ n /∗ infinite rank (or close enough) ∗/
⟨Remove v and all its successors on the active stack from the tree, and mark them as a strong component

of the graph 16 ⟩ ≡
{ register Vertex ∗t; /∗ runs through the vertices of the new strong component ∗/
t = active stack ;
active stack = v⃗ link ;
v⃗ link = settled stack ;
settled stack = t; /∗ we’ve moved the top of one stack to the other ∗/
printf ("Strong␣component␣‘%ld␣%s’", specs (v));
if (t ≡ v) putchar (’\n’); /∗ single vertex ∗/
else {
printf ("␣also␣includes:\n");
while (t ̸= v) {
printf ("␣%ld␣%s␣(from␣%ld␣%s;␣..to␣%ld␣%s)\n", specs (t), specs (t⃗ parent ), specs (t⃗ min ));
t⃗ rank = infinity ; /∗ now t is settled ∗/
t⃗ parent = v; /∗ and v represents the new strong component ∗/
t = t⃗ link ;

}
}
v⃗ rank = infinity ; /∗ v too is settled ∗/
v⃗ parent = v; /∗ and represents its own strong component ∗/

}
This code is used in section 15.
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17. After all the strong components have been found, we can also compute the relations between them,
without mentioning any cross-connection more than once. In fact, we built the settled stack precisely so that
this task could be done easily without sorting or searching. This part of the algorithm wouldn’t be necessary
if we were interested only in the strong components themselves.
For this step we use the name arc from for the field we previously called untagged . The trick here relies

on the fact that all vertices of the same strong component appear together in settled stack .

#define arc from x.V /∗ utility field x will now point to a vertex ∗/
⟨Print out one representative of each arc that runs between strong components 17 ⟩ ≡
printf ("\nLinks␣between␣components:\n");
for (v = settled stack ; v; v = v⃗ link ) { register Vertex ∗u = v⃗ parent ;
register Arc ∗a;
u⃗ arc from = u;
for (a = v⃗ arcs ; a; a = a⃗ next ) { register Vertex ∗w = a⃗ tip⃗ parent ;

if (w⃗ arc from ̸= u) {
w⃗ arc from = u;
printf ("%ld␣%s␣−>␣%ld␣%s␣(e.g.,␣%ld␣%s␣−>␣%ld␣%s)\n", specs (u), specs (w), specs (v),

specs (a⃗ tip));
}

}
}

This code is used in section 10.
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18. Index. We close with a list that shows where the identifiers of this program are defined and used.

a: 15, 17.
active stack : 8, 12, 14, 16.
Arc: 7, 15, 17.
arc from : 17.
arcs : 7, 12, 17.
argc : 2, 3.
argv : 2, 3.
cat no : 1.
d: 2.
filename : 1, 2, 3.
fprintf : 2, 3.
g: 2.
Graph: 2.
id : 2.
infinity : 16.
link : 4, 8, 14, 16, 17.
main : 2.
min : 4, 9, 10, 14, 15, 16.
n: 2.
name : 1.
next : 15, 17.
nn : 5, 12, 14.
p: 2.
panic code : 2.
parent : 4, 6, 9, 13, 15, 16, 17.
printf : 2, 16, 17.
putchar : 16.
rank : 4, 5, 10, 12, 14, 15, 16.
restore graph : 2.
roget : 1, 2.
s: 2.
settled stack : 8, 12, 16, 17.
specs : 1, 16, 17.
sscanf : 3.
stderr : 2, 3.
strncmp : 3.
t: 16.
Tarjan, Robert Endre: 1.
tip : 15, 17.
u: 15, 17.
UNIX dependencies: 2, 3.
untagged : 4, 7, 12, 15, 17.
v: 2.
Vertex: 2, 8, 11, 15, 16, 17.
vertices : 1, 10, 12.
vv : 10, 11, 13.
w: 17.
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⟨Explore one step from the current vertex v, possibly moving to another current vertex and calling it v 15 ⟩
Used in section 13.

⟨Global variables 5, 8, 11 ⟩ Used in section 2.

⟨Make all vertices unseen and all arcs untagged 12 ⟩ Used in section 10.

⟨Make vertex v active 14 ⟩ Used in sections 13 and 15.

⟨Perform Tarjan’s algorithm on g 10 ⟩ Used in section 2.

⟨Perform a depth-first search with vv as the root, finding the strong components of all unseen vertices
reachable from vv 13 ⟩ Used in section 10.

⟨Print out one representative of each arc that runs between strong components 17 ⟩ Used in section 10.

⟨Remove v and all its successors on the active stack from the tree, and mark them as a strong component
of the graph 16 ⟩ Used in section 15.

⟨Scan the command-line options 3 ⟩ Used in section 2.
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