
§1 GB BASIC INTRODUCTION 1

Important: Before reading GB BASIC, please read or at least skim the program for GB GRAPH.

1. Introduction. This GraphBase module contains six subroutines that generate standard graphs of
various types, together with six routines that combine or transform existing graphs.
Simple examples of the use of these routines can be found in the demonstration programs QUEEN and

QUEEN WRAP.

⟨ gb_basic.h 1 ⟩ ≡
extern Graph ∗board (); /∗ moves on generalized chessboards ∗/
extern Graph ∗simplex (); /∗ generalized triangular configurations ∗/
extern Graph ∗subsets (); /∗ patterns of subset intersection ∗/
extern Graph ∗perms (); /∗ permutations of a multiset ∗/
extern Graph ∗parts (); /∗ partitions of an integer ∗/
extern Graph ∗binary (); /∗ binary trees ∗/
extern Graph ∗complement (); /∗ the complement of a graph ∗/
extern Graph ∗gunion (); /∗ the union of two graphs ∗/
extern Graph ∗intersection (); /∗ the intersection of two graphs ∗/
extern Graph ∗lines (); /∗ the line graph of a graph ∗/
extern Graph ∗product (); /∗ the product of two graphs ∗/
extern Graph ∗induced (); /∗ a graph induced from another ∗/

See also sections 7, 36, 41, 54, 63, 94, 100, 102, and 104.

2. The C file gb_basic.c has the following overall shape:

#include "gb_graph.h" /∗ we use the GB GRAPH data structures ∗/
⟨Preprocessor definitions ⟩
⟨Private variables 3 ⟩
⟨Basic subroutines 8 ⟩
⟨Applications of basic subroutines 101 ⟩

3. Several of the programs below allocate arrays that will be freed again before the routine is finished.

⟨Private variables 3 ⟩ ≡
static Area working storage ;

See also sections 5, 10, and 51.

This code is used in section 2.

4. If a graph-generating subroutine encounters a problem, it returns Λ (that is, NULL), after putting a code
number into the external variable panic code . This code number identifies the type of failure. Otherwise
the routine returns a pointer to the newly created graph, which will be represented with the data structures
explained in GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c)
{ panic code = c;
gb free (working storage);
gb trouble code = 0;
return Λ;

}

5. The names of vertices are sometimes formed from the names of other vertices, or from potentially long
sequences of numbers. We assemble them in the buffer array, which is sufficiently long that the vast majority
of applications will be unconstrained by size limitations. The programs assume that BUF_SIZE is rather large,
but in cases of doubt they ensure that BUF_SIZE will never be exceeded.

#define BUF_SIZE 4096

⟨Private variables 3 ⟩ +≡
static char buffer [BUF_SIZE];

2 GRIDS AND GAME BOARDS GB BASIC §6

6. Grids and game boards. The subroutine call board (n1 ,n2 ,n3 ,n4 , piece ,wrap , directed) constructs
a graph based on the moves of generalized chesspieces on a generalized rectangular board. Each vertex of
the graph corresponds to a position on the board. Each arc of the graph corresponds to a move from one
position to another.
The first parameters, n1 through n4 , specify the size of the board. If, for example, a two-dimensional

board with n1 rows and n2 columns is desired, you set n1 = n1, n2 = n2, and n3 = 0; the resulting graph
will have n1n2 vertices. If you want a three-dimensional board with n3 layers, set n3 = n3 and n4 = 0. If
you want a 4-D board, put the number of 4th coordinates in n4 . If you want a d-dimensional board with 2d

positions, set n1 = 2 and n2 = −d.
In general, the board subroutine determines the dimensions by scanning the sequence (n1 ,n2 ,n3 ,n4 , 0)

= (n1, n2, n3, n4, 0) from left to right until coming to the first nonpositive parameter nk+1. If k = 0 (i.e.,
if n1 ≤ 0), the default size 8 × 8 will be used; this is an ordinary chessboard with 8 rows and 8 columns.
Otherwise if nk+1 = 0, the board will have k dimensions n1, . . . , nk. Otherwise we must have nk+1 < 0; in this
case, the board will have d = |nk+1| dimensions, chosen as the first d elements of the infinite periodic sequence
(n1, . . . , nk, n1, . . . , nk, n1, . . .). For example, the specification (n1 ,n2 ,n3 ,n4) = (2, 3, 5,−7) is about as
tricky as you can get. It produces a seven-dimensional board with dimensions (n1, . . . , n7) = (2, 3, 5, 2, 3, 5, 2),
hence a graph with 2 · 3 · 5 · 2 · 3 · 5 · 2 = 1800 vertices.

The piece parameter specifies the legal moves of a generalized chesspiece. If piece > 0, a move from
position u to position v is considered legal if and only if the Euclidean distance between points u and v is
equal to

√
piece . For example, if piece = 1 and if we have a two-dimensional board, the legal moves from

(x, y) are to (x, y ± 1) and (x ± 1, y); these are the moves of a so-called wazir, the only moves that a king
and a rook can both make. If piece = 2, the legal moves from (x, y) are to (x± 1, y ± 1); these are the four
moves that a king and a bishop can both make. (A piece that can make only these moves was called a “fers”
in ancient Muslim chess.) If piece = 5, the legal moves are those of a knight, from (x, y) to (x± 1, y ± 2) or
to (x± 2, y± 1). If piece = 3, there are no legal moves on a two-dimensional board; but moves from (x, y, z)
to (x ± 1, y ± 1, z ± 1) would be legal in three dimensions. If piece = 0, it is changed to the default value
piece = 1.
If the value of piece is negative, arbitrary multiples of the basic moves for |piece | are permitted. For

example, piece = −1 defines the moves of a rook, from (x, y) to (x ± a, y) or to (x, y ± a) for all a > 0;
piece = −2 defines the moves of a bishop, from (x, y) to (x±a, y±a). The literature of “fairy chess” assigns
standard names to the following piece values: wazir = 1, fers = 2, dabbaba = 4, knight = 5, alfil = 8,
camel = 10, zebra = 13, giraffe = 17, fiveleaper = 25, root-50-leaper = 50, etc.; rook = −1, bishop = −2,
unicorn = −3, dabbabarider = −4, nightrider = −5, alfilrider = −8, camelrider = −10, etc.

To generate a board with the moves of a king, you can use the gunion subroutine below to take the union
of boards with piece = 1 and piece = 2. Similarly, you can get queen moves by taking the union of boards
with piece = −1 and piece = −2.
If piece > 0, all arcs of the graph will have length 1. If piece < 0, the length of each arc will be the number

of multiples of a basic move that produced the arc.

§7 GB BASIC GRIDS AND GAME BOARDS 3

7. If the wrap parameter is nonzero, it specifies a subset of coordinates in which values are computed
modulo the corresponding size. For example, the coordinates (x, y) for vertices on a two-dimensional board
are restricted to the range 0 ≤ x < n1, 0 ≤ y < n2; therefore when wrap = 0, a move from (x, y) to
(x+ δ1, y + δ2) is legal only if 0 ≤ x+ δ1 < n1 and 0 ≤ y + δ2 < n2. But when wrap = 1, the x coordinates
are allowed to “wrap around”; the move would then be made to ((x + δ1) mod n1, y + δ2), provided that
0 ≤ y + δ2 < n2. Setting wrap = 1 effectively makes the board into a cylinder instead of a rectangle.
Similarly, the y coordinates are allowed to wrap around when wrap = 2. Both x and y coordinates are
treated modulo their corresponding sizes when wrap = 3; the board is then effectively a torus. In general,
coordinates k1, k2, . . . will wrap around when wrap = 2k1−1 + 2k2−1 + · · · . Setting wrap = −1 causes all
coordinates to be computed modulo their size.
The graph constructed by board will be undirected unless directed ̸= 0. Directed board graphs will be

acyclic when wrap = 0, but they may have cycles when wrap ̸= 0. Precise rules defining the directed arcs
are given below.
Several important special cases are worth noting. To get the complete graph on n vertices, you can say

board (n, 0, 0, 0,−1, 0, 0). To get the transitive tournament on n vertices, i.e., the directed graph with arcs
from u to v when u < v, you can say board (n, 0, 0, 0,−1, 0, 1). To get the empty graph on n vertices, you
can say board (n, 0, 0, 0, 2, 0, 0). To get a circuit (undirected) or a cycle (directed) of length n, you can say
board (n, 0, 0, 0, 1, 1, 0) and board (n, 0, 0, 0, 1, 1, 1), respectively.

⟨ gb_basic.h 1 ⟩ +≡
#define complete (n) board ((long)(n), 0L, 0L, 0L,−1L, 0L, 0L)
#define transitive (n) board ((long)(n), 0L, 0L, 0L,−1L, 0L, 1L)
#define empty (n) board ((long)(n), 0L, 0L, 0L, 2L, 0L, 0L)
#define circuit (n) board ((long)(n), 0L, 0L, 0L, 1L, 1L, 0L)
#define cycle (n) board ((long)(n), 0L, 0L, 0L, 1L, 1L, 1L)

8. ⟨Basic subroutines 8 ⟩ ≡
Graph ∗board (n1 ,n2 ,n3 ,n4 , piece ,wrap , directed)

long n1 , n2 , n3 , n4 ; /∗ size of board desired ∗/
long piece ; /∗ type of moves desired ∗/
long wrap ; /∗ mask for coordinate positions that wrap around ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
long n; /∗ total number of vertices ∗/
long p; /∗ |piece | ∗/
long l; /∗ length of current arc ∗/
⟨Normalize the board-size parameters 11 ⟩;
⟨Set up a graph with n vertices 13 ⟩;
⟨ Insert arcs or edges for all legal moves 15 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ alas, we ran out of memory somewhere back there ∗/

}
return new graph ;

}
See also sections 26, 37, 43, 55, 64, 74, 78, 81, 87, 95, and 105.

This code is used in section 2.

4 GRIDS AND GAME BOARDS GB BASIC §9

9. Most of the subroutines in GB BASIC use the following local variables.

⟨Vanilla local variables 9 ⟩ ≡
Graph ∗new graph ; /∗ the graph being constructed ∗/
register long i, j, k; /∗ all-purpose indices ∗/
register long d; /∗ the number of dimensions ∗/
register Vertex ∗v; /∗ the current vertex of interest ∗/
register long s; /∗ accumulator ∗/

This code is used in sections 8, 26, 37, 43, 55, 64, 74, 78, 81, 87, 95, and 105.

10. Several arrays will facilitate the calculations that board needs to make. The number of distinct values
in coordinate position k will be nn [k]; this coordinate position will wrap around if and only if wr [k] ̸= 0.
The current moves under consideration will be from (x1, . . . , xd) to (x1 + δ1, . . . , xd + δd), where δk is stored
in del [k]. An auxiliary array sig holds the sums σk = δ21 + · · · + δ2k−1. Additional arrays xx and yy hold
coordinates of vertices before and after a move is made.
Some of these arrays are also used for other purposes by other programs besides board ; we will meet those

programs later.
We limit the number of dimensions to 91 or less. This is hardly a limitation, since the number of vertices

would be astronomical even if the dimensionality were only half this big. But some of our later programs
will be able to make good use of 40 or 50 dimensions and perhaps more; the number 91 is an upper limit
imposed by the number of standard printable characters (see the convention for vertex names in the perms
routine).

#define MAX_D 91

⟨Private variables 3 ⟩ +≡
static long nn [MAX_D + 1]; /∗ component sizes ∗/
static long wr [MAX_D + 1]; /∗ does this component wrap around? ∗/
static long del [MAX_D + 1]; /∗ displacements for the current move ∗/
static long sig [MAX_D + 2]; /∗ partial sums of squares of displacements ∗/
static long xx [MAX_D + 1], yy [MAX_D + 1]; /∗ coordinate values ∗/

11. ⟨Normalize the board-size parameters 11 ⟩ ≡
if (piece ≡ 0) piece = 1;
if (n1 ≤ 0) { n1 = n2 = 8; n3 = 0; }
nn [1] = n1 ;
if (n2 ≤ 0) { k = 2; d = −n2 ; n3 = n4 = 0; }
else {
nn [2] = n2 ;
if (n3 ≤ 0) { k = 3; d = −n3 ; n4 = 0; }
else {
nn [3] = n3 ;
if (n4 ≤ 0) { k = 4; d = −n4 ; }
else { nn [4] = n4 ; d = 4; goto done ; }

}
}
if (d ≡ 0) { d = k − 1; goto done ; }
⟨Compute component sizes periodically for d dimensions 12 ⟩;
done : /∗ now nn [1] through nn [d] are set up ∗/

This code is used in section 8.

§12 GB BASIC GRIDS AND GAME BOARDS 5

12. At this point, nn [1] through nn [k − 1] are the component sizes that should be replicated periodically.
In unusual cases, the number of dimensions might not be as large as the number of specifications.

⟨Compute component sizes periodically for d dimensions 12 ⟩ ≡
if (d > MAX_D) panic(bad specs); /∗ too many dimensions ∗/
for (j = 1; k ≤ d; j++, k++) nn [k] = nn [j];

This code is used in sections 11 and 27.

13. We want to make the subroutine idiot-proof, so we use floating-point arithmetic to make sure that
boards with more than a billion cells have not been specified.

#define MAX_NNN 1000000000.0

⟨Set up a graph with n vertices 13 ⟩ ≡
{ float nnn ; /∗ approximate size ∗/
for (n = 1,nnn = 1.0, j = 1; j ≤ d; j++) {
nnn ∗= (float) nn [j];
if (nnn > MAX_NNN) panic(very bad specs); /∗ way too big ∗/
n ∗= nn [j]; /∗ this multiplication cannot cause integer overflow ∗/

}
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "board(%ld,%ld,%ld,%ld,%ld,%ld,%d)",n1 ,n2 ,n3 ,n4 , piece ,wrap ,

directed ? 1 : 0);
strcpy (new graph⃗util types , "ZZZIIIZZZZZZZZ");
⟨Give names to the vertices 14 ⟩;

}
This code is used in section 8.

14. The symbolic name of a board position like (3, 1) will be the string ‘3.1’. The first three coordinates
are also stored as integers, in utility fields x.I, y.I, and z.I, because immediate access to those values will
be helpful in certain applications. (The coordinates can, of course, always be recovered in a slower fashion
from the vertex name, via sscanf .)
The process of assigning coordinate values and names is equivalent to adding unity in a mixed-radix

number system. Vertex (x1, . . . , xd) will be in position x1n2 . . . nd + · · · + xd−1nd + xd relative to the first
vertex of the new graph; therefore it is also possible to deduce the coordinates of a vertex from its address.

⟨Give names to the vertices 14 ⟩ ≡
{ register char ∗q; /∗ string pointer ∗/
nn [0] = xx [0] = xx [1] = xx [2] = xx [3] = 0;
for (k = 4; k ≤ d; k++) xx [k] = 0;
for (v = new graph⃗vertices ; ; v++) {

q = buffer ;
for (k = 1; k ≤ d; k++) {
sprintf (q, ".%ld", xx [k]);
while (∗q) q++;

}
v⃗ name = gb save string (&buffer [1]); /∗ omit buffer [0], which is ’.’ ∗/
v⃗ x.I = xx [1]; v⃗ y.I = xx [2]; v⃗ z.I = xx [3];
for (k = d; xx [k] + 1 ≡ nn [k]; k−−) xx [k] = 0;
if (k ≡ 0) break; /∗ a “carry” has occurred all the way to the left ∗/
xx [k]++; /∗ increase coordinate k ∗/

}
}

This code is used in section 13.

6 GRIDS AND GAME BOARDS GB BASIC §15

15. Now we come to a slightly tricky part of the routine: the move generator. Let p = |piece |. The
outer loop of this procedure runs through all solutions of the equation δ21 + · · · + δ2d = p, where the δ’s
are nonnegative integers. Within that loop, we attach signs to the δ’s, but we always leave δk positive if
δ1 = · · · = δk−1 = 0. For every such vector δ, we generate moves from v to v + δ for every vertex v. When
directed = 0, we use gb new edge instead of gb new arc , so that the reverse arc from v + δ to v is also
generated.

⟨ Insert arcs or edges for all legal moves 15 ⟩ ≡
⟨ Initialize the wr , sig , and del tables 16 ⟩;
p = piece ;
if (p < 0) p = −p;
while (1) {
⟨Advance to the next nonnegative del vector, or break if done 17 ⟩;
while (1) {
⟨Generate moves for the current del vector 19 ⟩;
⟨Advance to the next signed del vector, or restore del to nonnegative values and break 18 ⟩;

}
}

This code is used in section 8.

16. The C language does not define ≫ unambiguously. If w is negative, the assignment ‘w ≫= 1’ here
should keep w negative. (However, this technicality doesn’t matter except in highly unusual cases when
there are more than 32 dimensions.)

⟨ Initialize the wr , sig , and del tables 16 ⟩ ≡
{ register long w = wrap ;

for (k = 1; k ≤ d; k++, w ≫= 1) {
wr [k] = w & 1;
del [k] = sig [k] = 0;

}
sig [0] = del [0] = sig [d+ 1] = 0;

}
This code is used in section 15.

17. The sig array makes it easy to backtrack through all partitions of p into an ordered sum of squares.

⟨Advance to the next nonnegative del vector, or break if done 17 ⟩ ≡
for (k = d; sig [k] + (del [k] + 1) ∗ (del [k] + 1) > p; k−−) del [k] = 0;
if (k ≡ 0) break;
del [k]++;
sig [k + 1] = sig [k] + del [k] ∗ del [k];
for (k++; k ≤ d; k++) sig [k + 1] = sig [k];
if (sig [d+ 1] < p) continue;

This code is used in section 15.

18. ⟨Advance to the next signed del vector, or restore del to nonnegative values and break 18 ⟩ ≡
for (k = d; del [k] ≤ 0; k−−) del [k] = −del [k];
if (sig [k] ≡ 0) break; /∗ all but del [k] were negative or zero ∗/
del [k] = −del [k]; /∗ some entry preceding del [k] is positive ∗/

This code is used in section 15.

§19 GB BASIC GRIDS AND GAME BOARDS 7

19. We use the mixed-radix addition technique again when generating moves.

⟨Generate moves for the current del vector 19 ⟩ ≡
for (k = 1; k ≤ d; k++) xx [k] = 0;
for (v = new graph⃗vertices ; ; v++) {
⟨Generate moves from v corresponding to del 20 ⟩;
for (k = d; xx [k] + 1 ≡ nn [k]; k−−) xx [k] = 0;
if (k ≡ 0) break; /∗ a “carry” has occurred all the way to the left ∗/
xx [k]++; /∗ increase coordinate k ∗/

}
This code is used in section 15.

20. The legal moves when piece is negative are derived as follows, in the presence of possible wraparound:
Starting at (x1, . . . , xd), we move to (x1 + δ1, . . . , xd + δd), (x1 + 2δ1, . . . , xd + 2δd), . . . , until either coming
to a position with a nonwrapped coordinate out of range or coming back to the original point.
A subtle technicality should be noted: When coordinates are wrapped and piece > 0, self-loops are

possible—for example, in board (1, 0, 0, 0, 1, 1, 1). But self-loops never arise when piece < 0.

⟨Generate moves from v corresponding to del 20 ⟩ ≡
for (k = 1; k ≤ d; k++) yy [k] = xx [k] + del [k];
for (l = 1; ; l++) {
⟨Correct for wraparound, or goto no more if off the board 22 ⟩;
if (piece < 0) ⟨Go to no more if yy = xx 21 ⟩;
⟨Record a legal move from xx to yy 23 ⟩;
if (piece > 0) goto no more ;
for (k = 1; k ≤ d; k++) yy [k] += del [k];

}
no more :

This code is used in section 19.

21. ⟨Go to no more if yy = xx 21 ⟩ ≡
{
for (k = 1; k ≤ d; k++)
if (yy [k] ̸= xx [k]) goto unequal ;

goto no more ;
unequal : ;
}

This code is used in section 20.

22. ⟨Correct for wraparound, or goto no more if off the board 22 ⟩ ≡
for (k = 1; k ≤ d; k++) {
if (yy [k] < 0) {
if (¬wr [k]) goto no more ;
do yy [k] += nn [k]; while (yy [k] < 0);

} else if (yy [k] ≥ nn [k]) {
if (¬wr [k]) goto no more ;
do yy [k] −= nn [k]; while (yy [k] ≥ nn [k]);

}
}

This code is used in section 20.

8 GRIDS AND GAME BOARDS GB BASIC §23

23. ⟨Record a legal move from xx to yy 23 ⟩ ≡
for (k = 2, j = yy [1]; k ≤ d; k++) j = nn [k] ∗ j + yy [k];
if (directed) gb new arc(v,new graph⃗vertices + j, l);
else gb new edge (v,new graph⃗vertices + j, l);

This code is used in section 20.

§24 GB BASIC GENERALIZED TRIANGULAR BOARDS 9

24. Generalized triangular boards. The subroutine call simplex (n,n0 ,n1 ,n2 ,n3 ,n4 , directed) cre-
ates a graph based on generalized triangular or tetrahedral configurations. Such graphs are similar in spirit
to the game boards created by board , but they pertain to nonrectangular grids like those in Chinese checkers.
As with board in the case piece = 1, the vertices represent board positions and the arcs run from board
positions to their nearest neighbors. Each arc has length 1.
More formally, the vertices can be defined as sequences of nonnegative integers (x0, x1, . . . , xd) whose sum

is n, where two sequences are considered adjacent if and only if they differ by ±1 in exactly two components—
equivalently, if the Euclidean distance between them is

√
2. When d = 2, for example, the vertices can be

visualized as a triangular array
(0, 0, 3)

(0, 1, 2) (1, 0, 2)
(0, 2, 1) (1, 1, 1) (2, 0, 1)

(0, 3, 0) (1, 2, 0) (2, 1, 0) (3, 0, 0)

containing (n + 1)(n + 2)/2 elements, illustrated here when n = 3; each vertex of the array has up to 6
neighbors. When d = 3 the vertices form a tetrahedral array, a stack of triangular layers, and they can have
as many as 12 neighbors. In general, a vertex in a d-simplicial array will have up to d(d+ 1) neighbors.
If the directed parameter is nonzero, arcs run only from vertices to neighbors that are lexicographically

greater—for example, downward or to the right in the triangular array shown. The directed graph is therefore
acyclic, and a vertex of a d-simplicial array has out-degree at most d(d+ 1)/2.

25. The first parameter, n, specifies the sum of the coordinates (x0, x1, . . . , xd). The following parameters
n0 through n4 specify upper bounds on those coordinates, and they also specify the dimensionality d.

If, for example, n0 , n1 , and n2 are positive while n3 = 0, the value of d will be 2 and the coordinates
will be constrained to satisfy 0 ≤ x0 ≤ n0 , 0 ≤ x1 ≤ n1 , 0 ≤ x2 ≤ n2 . These upper bounds essentially
lop off the corners of the triangular array. We obtain a hexagonal board with 6m boundary cells by asking
for simplex (3m, 2m, 2m, 2m, 0, 0, 0). We obtain the diamond-shaped board used in the game of Hex [Martin
Gardner, The Scientific American Book of Mathematical Puzzles & Diversions (Simon & Schuster, 1959),
Chapter 8] by calling simplex (20, 10, 20, 10, 0, 0, 0).
In general, simplex determines d and upper bounds (n0, n1, . . . , nd) in the following way: Let the first

nonpositive entry of the sequence (n0 ,n1 ,n2 ,n3 ,n4 , 0) = (n0, n1, n2, n3, n4, 0) be nk. If k > 0 and nk = 0,
the value of d will be k− 1 and the coordinates will be bounded by the given numbers (n0, . . . , nd). If k > 0
and nk < 0, the value of d will be |nk| and the coordinates will be bounded by the first d + 1 elements of
the infinite periodic sequence (n0, . . . , nk−1, n0, . . . , nk−1, n0, . . .). If k = 0 and n0 < 0, the value of d will
be |n0| and the coordinates will be unbounded; equivalently, we may set n0 = · · · = nd = n. In this case the
number of vertices will be

(
n+d
d

)
. Finally, if k = 0 and n0 = 0, we have the default case of a triangular array

with 3n boundary cells, exactly as if n0 = −2.
For example, the specification n0 = 3, n1 = −5 will produce all vertices (x0, x1, . . . , x5) such that

x0 + x1 + · · · + x5 = n and 0 ≤ xj ≤ 3. The specification n0 = 1, n1 = −d will essentially produce
all n-element subsets of the (d + 1)-element set {0, 1, . . . , d}, because we can regard an element k as being
present in the set if xk = 1 and absent if xk = 0. In that case two subsets are adjacent if and only if they
have exactly n− 1 elements in common.

10 GENERALIZED TRIANGULAR BOARDS GB BASIC §26

26. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗simplex (n,n0 ,n1 ,n2 ,n3 ,n4 , directed)

unsigned long n; /∗ the constant sum of all coordinates ∗/
long n0 , n1 , n2 , n3 , n4 ; /∗ constraints on coordinates ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
⟨Normalize the simplex parameters 27 ⟩;
⟨Create a graph with one vertex for each point 28 ⟩;
⟨Name the points and create the arcs or edges 31 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ darn, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

27. ⟨Normalize the simplex parameters 27 ⟩ ≡
if (n0 ≡ 0) n0 = −2;
if (n0 < 0) { k = 2; nn [0] = n; d = −n0 ; n1 = n2 = n3 = n4 = 0; }
else {
if (n0 > n) n0 = n;
nn [0] = n0 ;
if (n1 ≤ 0) { k = 2; d = −n1 ; n2 = n3 = n4 = 0; }
else {
if (n1 > n) n1 = n;
nn [1] = n1 ;
if (n2 ≤ 0) { k = 3; d = −n2 ; n3 = n4 = 0; }
else {
if (n2 > n) n2 = n;
nn [2] = n2 ;
if (n3 ≤ 0) { k = 4; d = −n3 ; n4 = 0; }
else {

if (n3 > n) n3 = n;
nn [3] = n3 ;
if (n4 ≤ 0) { k = 5; d = −n4 ; }
else { if (n4 > n) n4 = n;
nn [4] = n4 ; d = 4; goto done ; }

}
}

}
}
if (d ≡ 0) { d = k − 2; goto done ; }
nn [k − 1] = nn [0];
⟨Compute component sizes periodically for d dimensions 12 ⟩;
done : /∗ now nn [0] through nn [d] are set up ∗/

This code is used in sections 26, 37, and 44.

28. ⟨Create a graph with one vertex for each point 28 ⟩ ≡
⟨Determine the number of feasible (x0, . . . , xd), and allocate the graph 29 ⟩;
sprintf (new graph⃗ id , "simplex(%lu,%ld,%ld,%ld,%ld,%ld,%d)", n,n0 ,n1 ,n2 ,n3 ,n4 , directed ? 1 : 0);
strcpy (new graph⃗util types , "VVZIIIZZZZZZZZ"); /∗ hash table will be used ∗/

This code is used in section 26.

§29 GB BASIC GENERALIZED TRIANGULAR BOARDS 11

29. We determine the number of vertices by determining the coefficient of zn in the power series

(1 + z + · · ·+ zn0)(1 + z + · · ·+ zn1) . . . (1 + z + · · ·+ znd).

⟨Determine the number of feasible (x0, . . . , xd), and allocate the graph 29 ⟩ ≡
{ long nverts ; /∗ the number of vertices ∗/
register long ∗coef = gb typed alloc(n+ 1, long,working storage);

if (gb trouble code) panic(no room + 1); /∗ can’t allocate coef array ∗/
for (k = 0; k ≤ nn [0]; k++) coef [k] = 1;

/∗ now coef represents the coefficients of 1 + z + · · ·+ zn0 ∗/
for (j = 1; j ≤ d; j++) ⟨Multiply the power series coefficients by 1 + z + · · ·+ znj 30 ⟩;
nverts = coef [n];
gb free (working storage); /∗ recycle the coef array ∗/
new graph = gb new graph (nverts);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/

}
This code is used in sections 28 and 38.

30. There’s a neat way to multiply by 1 + z + · · · + znj : We multiply first by 1 − znj+1, then sum the
coefficients.
We want to detect impossibly large specifications without risking integer overflow. It is easy to do this

because multiplication is being done via addition.

⟨Multiply the power series coefficients by 1 + z + · · ·+ znj 30 ⟩ ≡
{
for (k = n, i = n− nn [j]− 1; i ≥ 0; k−−, i−−) coef [k] −= coef [i];
s = 1;
for (k = 1; k ≤ n; k++) {

s += coef [k];
if (s > 1000000000) panic(very bad specs); /∗ way too big ∗/
coef [k] = s;

}
}

This code is used in section 29.

12 GENERALIZED TRIANGULAR BOARDS GB BASIC §31

31. As we generate the vertices, it proves convenient to precompute an array containing the numbers
yj = nj + · · · + nd, which represent the largest possible sums xj + · · · + xd. We also want to maintain the
numbers σj = n− (x0 + · · ·+ xj−1) = xj + · · ·+ xd. The conditions

0 ≤ xj ≤ nj , σj − yj+1 ≤ xj ≤ σj

are necessary and sufficient, in the sense that we can find at least one way to complete a partial solution
(x0, . . . , xk) to a full solution (x0, . . . , xd) if and only if the conditions hold for all j ≤ k.

There is at least one solution if and only if n ≤ y0.
We enter the name string into a hash table, using the hash in routine of GB GRAPH, because there is no

simple way to compute the location of a vertex from its coordinates.

⟨Name the points and create the arcs or edges 31 ⟩ ≡
v = new graph⃗vertices ;
yy [d+ 1] = 0; sig [0] = n;
for (k = d; k ≥ 0; k−−) yy [k] = yy [k + 1] + nn [k];
if (yy [0] ≥ n) {
k = 0; xx [0] = (yy [1] ≥ n ? 0 : n− yy [1]);
while (1) {
⟨Complete the partial solution (x0, . . . , xk) 32 ⟩;
⟨Assign a symbolic name for (x0, . . . , xd) to vertex v 34 ⟩;
hash in (v); /∗ enter v⃗ name into the hash table (via utility fields u, v) ∗/
⟨Create arcs or edges from previous points to v 35 ⟩;
v++;
⟨Advance to the next partial solution (x0, . . . , xk), where k is as large as possible; goto last if there

are no more solutions 33 ⟩;
}

}
last : if (v ̸= new graph⃗vertices + new graph⃗n) panic(impossible); /∗ can’t happen ∗/
This code is used in section 26.

32. ⟨Complete the partial solution (x0, . . . , xk) 32 ⟩ ≡
for (s = sig [k]− xx [k], k++; k ≤ d; s −= xx [k], k++) {
sig [k] = s;
if (s ≤ yy [k + 1]) xx [k] = 0;
else xx [k] = s− yy [k + 1];

}
if (s ̸= 0) panic(impossible + 1) /∗ can’t happen ∗/

This code is used in sections 31 and 39.

33. Here we seek the largest k such that xk can be increased without violating the necessary and sufficient
conditions stated earlier.

⟨Advance to the next partial solution (x0, . . . , xk), where k is as large as possible; goto last if there are no
more solutions 33 ⟩ ≡

for (k = d− 1; ; k−−) {
if (xx [k] < sig [k] ∧ xx [k] < nn [k]) break;
if (k ≡ 0) goto last ;

}
xx [k]++;

This code is used in sections 31 and 39.

§34 GB BASIC GENERALIZED TRIANGULAR BOARDS 13

34. As in the board routine, we represent the sequence of coordinates (2, 0, 1) by the string ‘2.0.1’. The
string won’t exceed BUF_SIZE, because the ratio BUF_SIZE/MAX_D is plenty big.

The first three coordinate values, (x0, x1, x2), are placed into utility fields x, y, and z, so that they can be
accessed immediately if an application needs them.

⟨Assign a symbolic name for (x0, . . . , xd) to vertex v 34 ⟩ ≡
{ register char ∗p = buffer ; /∗ string pointer ∗/
for (k = 0; k ≤ d; k++) {

sprintf (p, ".%ld", xx [k]);
while (∗p) p++;

}
v⃗ name = gb save string (&buffer [1]); /∗ omit buffer [0], which is ’.’ ∗/
v⃗ x.I = xx [0]; v⃗ y.I = xx [1]; v⃗ z.I = xx [2];

}
This code is used in sections 31 and 39.

35. Since we are generating the vertices in lexicographic order of their coordinates, it is easy to identify
all adjacent vertices that precede the current setting of (x0, x1, . . . , xd). We locate them via their symbolic
names.

⟨Create arcs or edges from previous points to v 35 ⟩ ≡
for (j = 0; j < d; j++)
if (xx [j]) { register Vertex ∗u; /∗ previous vertex adjacent to v ∗/

xx [j]−−;
for (k = j + 1; k ≤ d; k++)
if (xx [k] < nn [k]) { register char ∗p = buffer ; /∗ string pointer ∗/
xx [k]++;
for (i = 0; i ≤ d; i++) {
sprintf (p, ".%ld", xx [i]);
while (∗p) p++;

}
u = hash out (&buffer [1]);
if (u ≡ Λ) panic(impossible + 2); /∗ can’t happen ∗/
if (directed) gb new arc(u, v, 1L);
else gb new edge (u, v, 1L);
xx [k]−−;

}
xx [j]++;

}
This code is used in section 31.

14 SUBSET GRAPHS GB BASIC §36

36. Subset graphs. The subroutine call subsets (n, n0 , n1 , n2 , n3 , n4 , size bits , directed) creates a
graph having the same vertices as simplex (n,n0 ,n1 ,n2 ,n3 ,n4 , directed) but with a quite different notion
of adjacency. In this we interpret a solution (x0, x1, . . . , xd) to the conditions x0 + x1 + · · · + xd = n
and 0 ≤ xj ≤ nj not as a position on a game board but as an n-element submultiset of the multiset
{n0 · 0, n1 · 1, . . . , nd · d} that has xj elements equal to j. (If each nj = 1, the multiset is a set; this is an
important special case.) Two vertices are adjacent if and only if their intersection has a cardinality that
matches one of the bits in size bits , which is an unsigned integer. Each arc has length 1.
For example, suppose n = 3 and (n0 ,n1 ,n2 ,n3) = (2, 2, 2, 0). Then the vertices are the 3-element

submultisets of {0, 0, 1, 1, 2, 2}, namely

{0, 0, 1}, {0, 0, 2}, {0, 1, 1}, {0, 1, 2}, {0, 2, 2}, {1, 1, 2}, {1, 2, 2},

which are represented by the respective vectors

(2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 2, 1), (0, 1, 2).

The intersection of multisets represented by (x0, x1, . . . , xd) and (y0, y1, . . . , yd) is(
min(x0, y0),min(x1, y1), . . . ,min(xd, yd)

)
;

each element occurs as often as it occurs in both multisets being intersected. If now size bits = 3, the
multisets will be considered adjacent whenever their intersection contains exactly 0 or 1 elements, because
3 = 20 + 21. The vertices adjacent to {0, 0, 1}, for example, will be {0, 2, 2}, {1, 1, 2}, and {1, 2, 2}. In
this case, every pair of submultisets has a nonempty intersection, so the same graph would be obtained if
size bits = 2.

If directed is nonzero, the graph will have directed arcs, from u to v only if u ≤ v. Notice that the graph
will have self-loops if and only if the binary representation of size bits contains the term 2n, in which case
there will be a loop from every vertex to itself. (In an undirected graph, such loops are represented by two
arcs.)
We define a macro disjoint subsets (n, k) for the case of

(
n
k

)
vertices, adjacent if and only if they represent

disjoint k-subsets of an n-set. One important special case is the Petersen graph, whose vertices are the
2-element subsets of {0, 1, 2, 3, 4}, adjacent when they are disjoint. This graph is remarkable because it
contains 10 vertices, each of degree 3, but it has no circuits of length less than 5.

⟨ gb_basic.h 1 ⟩ +≡
#define disjoint subsets (n, k) subsets ((long)(k), 1L, (long)(1− (n)), 0L, 0L, 0L, 1L, 0L)
#define petersen () disjoint subsets (5, 2)

§37 GB BASIC SUBSET GRAPHS 15

37. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗subsets (n,n0 ,n1 ,n2 ,n3 ,n4 , size bits , directed)

unsigned long n; /∗ the number of elements in the multiset ∗/
long n0 , n1 , n2 , n3 , n4 ; /∗ multiplicities of elements ∗/
unsigned long size bits ; /∗ intersection sizes that trigger arcs ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
⟨Normalize the simplex parameters 27 ⟩;
⟨Create a graph with one vertex for each subset 38 ⟩;
⟨Name the subsets and create the arcs or edges 39 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ rats, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

38. ⟨Create a graph with one vertex for each subset 38 ⟩ ≡
⟨Determine the number of feasible (x0, . . . , xd), and allocate the graph 29 ⟩;
sprintf (new graph⃗ id , "subsets(%lu,%ld,%ld,%ld,%ld,%ld,0x%lx,%d)", n,n0 ,n1 ,n2 ,n3 ,n4 ,

size bits , directed ? 1 : 0);
strcpy (new graph⃗util types , "ZZZIIIZZZZZZZZ"); /∗ hash table will not be used ∗/

This code is used in section 37.

39. We generate the vertices with exactly the logic used in simplex .

⟨Name the subsets and create the arcs or edges 39 ⟩ ≡
v = new graph⃗vertices ;
yy [d+ 1] = 0; sig [0] = n;
for (k = d; k ≥ 0; k−−) yy [k] = yy [k + 1] + nn [k];
if (yy [0] ≥ n) {
k = 0; xx [0] = (yy [1] ≥ n ? 0 : n− yy [1]);
while (1) {
⟨Complete the partial solution (x0, . . . , xk) 32 ⟩;
⟨Assign a symbolic name for (x0, . . . , xd) to vertex v 34 ⟩;
⟨Create arcs or edges from previous subsets to v 40 ⟩;
v++;
⟨Advance to the next partial solution (x0, . . . , xk), where k is as large as possible; goto last if there

are no more solutions 33 ⟩;
}

}
last : if (v ̸= new graph⃗vertices + new graph⃗n) panic(impossible); /∗ can’t happen ∗/
This code is used in section 37.

16 SUBSET GRAPHS GB BASIC §40

40. The only difference is that we generate the arcs or edges by brute force, examining each pair of vertices
to see if they are adjacent or not.
The code here is character-set dependent: It assumes that ‘.’ and null have a character code less than ‘0’,

as in ASCII. It also assumes that characters occupy exactly eight bits.

#define UL_BITS 8 ∗ sizeof (unsigned long) /∗ the number of bits in size bits ∗/
⟨Create arcs or edges from previous subsets to v 40 ⟩ ≡

{ register Vertex ∗u;
for (u = new graph⃗vertices ; u ≤ v; u++) { register char ∗p = u⃗ name ;
long ss = 0; /∗ the number of elements common to u and v ∗/
for (j = 0; j ≤ d; j++, p++) {
for (s = (∗p++)− ’0’; ∗p ≥ ’0’; p++) s = 10 ∗ s+ ∗p− ’0’; /∗ sscanf (p, "%ld",&s) ∗/
if (xx [j] < s) ss += xx [j];
else ss += s;

}
if (ss < UL_BITS ∧ (size bits & (((unsigned long) 1) ≪ ss))) {

if (directed) gb new arc(u, v, 1L);
else gb new edge (u, v, 1L);

}
}

}
This code is used in section 39.

§41 GB BASIC PERMUTATION GRAPHS 17

41. Permutation graphs. The subroutine call perms (n0 ,n1 ,n2 ,n3 ,n4 ,max inv , directed) creates a
graph whose vertices represent the permutations of a multiset that have at most max inv inversions. Two
permutations are adjacent in the graph if one is obtained from the other by interchanging two adjacent
elements. Each arc has length 1.
For example, the multiset {0, 0, 1, 2} has the following twelve permutations:

0012, 0021, 0102, 0120, 0201, 0210,
1002, 1020, 1200, 2001, 2010, 2100.

The first of these, 0012, has two neighbors, 0021 and 0102.
The number of inversions is the number of pairs of elements xy such that x > y and x precedes y from left

to right, counting multiplicity. For example, 2010 has four inversions, corresponding to xy ∈ {20, 21, 20, 10}.
It is not difficult to verify that the number of inversions of a permutation is the distance in the graph from
that permutation to the lexicographically first permutation.
Parameters n0 through n4 specify the composition of the multiset, just as in the subsets routine. Roughly

speaking, there are n0 elements equal to 0, n1 elements equal to 1, and so on. The multiset {0, 0, 1, 2, 3, 3},
for example, would be represented by (n0 ,n1 ,n2 ,n3 ,n4) = (2, 1, 1, 2, 0).
Of course, we sometimes want to have multisets with more than five distinct elements; when there are

d+1 distinct elements, the multiset should have nk elements equal to k and n = n0 +n1 + · · ·+nd elements
in all. Larger values of d can be specified by using −d as a parameter: If n0 = −d, each multiplicity nk is
taken to be 1; if n0 > 0 and n1 = −d, each multiplicity nk is taken to be equal to n0 ; if n0 > 0, n1 > 0,
and n2 = −d, the multiplicities are alternately (n0 ,n1 ,n0 ,n1 ,n0 , . . .); if n0 > 0, n1 > 0, n2 > 0, and
n3 = −d, the multiplicities are the first d + 1 elements of the periodic sequence (n0 ,n1 ,n2 ,n0 ,n1 , . . .);
and if all but n4 are positive, while n4 = −d, the multiplicities again are periodic.

An example like (n0 ,n1 ,n2 ,n3 ,n4) = (1, 2, 3, 4,−8) is about as tricky as you can get. It specifies the
multiset {0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8}.
If any of the multiplicity parameters is negative or zero, the remaining multiplicities are ignored. For

example, if n2 ≤ 0, the subroutine does not look at n3 or n4 .
You probably don’t want to try perms (n0 , 0, 0, 0, 0,max inv , directed) when n0 > 0, because a multiset

with n0 identical elements has only one permutation.
The special case when you want all n! permutations of an n-element set can be obtained by calling

all perms (n, directed).

⟨ gb_basic.h 1 ⟩ +≡
#define all perms (n, directed) perms ((long)(1− (n)), 0L, 0L, 0L, 0L, 0L, (long)(directed))

42. If max inv = 0, all permutations will be considered, regardless of the number of inversions. In that
case the total number of vertices in the graph will be the multinomial coefficient(

n

n0, n1, . . . , nd

)
, n = n0 + n1 + · · ·+ nd.

The maximum number of inversions in general is the number of inversions of the lexicographically last
permutation, namely

(
n
2

)
−
(
n0

2

)
−
(
n1

2

)
− · · · −

(
nd

2

)
=

∑
0≤j<k≤d njnk.

Notice that in the case d = 1, we essentially obtain all combinations of n0 + n1 elements taken n1 at a
time. The positions of the 1’s correspond to the elements of a subset or sample.
If directed is nonzero, the graph will contain only directed arcs from permutations to neighboring permu-

tations that have exactly one more inversion. In this case the graph corresponds to a partial ordering that
is a lattice with interesting properties; see the article by Bennett and Birkhoff in Algebra Universalis 32
(1994), 115–144.

18 PERMUTATION GRAPHS GB BASIC §43

43. The program for perms is very similar in structure to the program for simplex already considered.

⟨Basic subroutines 8 ⟩ +≡
Graph ∗perms (n0 ,n1 ,n2 ,n3 ,n4 ,max inv , directed)

long n0 , n1 , n2 , n3 , n4 ; /∗ composition of the multiset ∗/
unsigned long max inv ; /∗ maximum number of inversions ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register long n; /∗ total number of elements in multiset ∗/
⟨Normalize the permutation parameters 44 ⟩;
⟨Create a graph with one vertex for each permutation 46 ⟩;
⟨Name the permutations and create the arcs or edges 48 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ shucks, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

44. ⟨Normalize the permutation parameters 44 ⟩ ≡
if (n0 ≡ 0) { n0 = 1; n1 = 0; } /∗ convert the empty set into {0} ∗/
else if (n0 < 0) { n1 = n0 ; n0 = 1; }
n = BUF_SIZE; /∗ this allows us to borrow code from simplex , already written ∗/
⟨Normalize the simplex parameters 27 ⟩;
⟨Determine n and the maximum possible number of inversions 45 ⟩;

This code is used in section 43.

45. Here we want to set max inv to the maximum possible number of inversions, if the given value of
max inv is zero or if it exceeds that maximum number.

⟨Determine n and the maximum possible number of inversions 45 ⟩ ≡
{ register long ss ; /∗ max inversions known to be possible ∗/
for (k = 0, s = ss = 0; k ≤ d; ss += s ∗ nn [k], s += nn [k], k++)

if (nn [k] ≥ BUF_SIZE) panic(bad specs); /∗ too many elements in the multiset ∗/
if (s ≥ BUF_SIZE) panic(bad specs + 1); /∗ too many elements in the multiset ∗/
n = s;
if (max inv ≡ 0 ∨max inv > ss) max inv = ss ;

}
This code is used in section 44.

§46 GB BASIC PERMUTATION GRAPHS 19

46. To determine the number of vertices, we sum the first max inv + 1 coefficients of a power series in
which the coefficient of zj is the number of permutations having j inversions. It is known [Sorting and
Searching, exercise 5.1.2–16] that this power series is the “z-multinomial coefficient”(

n

n0, . . . , nd

)
z

=
n!z

n0!z . . . nd!z
, where m!z =

m∏
k=1

1− zk

1− z
.

⟨Create a graph with one vertex for each permutation 46 ⟩ ≡
{ long nverts ; /∗ the number of vertices ∗/
register long ∗coef = gb typed alloc(max inv + 1, long,working storage);

if (gb trouble code) panic(no room + 1); /∗ can’t allocate coef array ∗/
coef [0] = 1;
for (j = 1, s = nn [0]; j ≤ d; s += nn [j], j++)
⟨Multiply the power series coefficients by

∏
1≤k≤nj

(1− zs+k)/(1− zk) 47 ⟩;
for (k = 1,nverts = 1; k ≤ max inv ; k++) {
nverts += coef [k];
if (nverts > 1000000000) panic(very bad specs); /∗ way too big ∗/

}
gb free (working storage); /∗ recycle the coef array ∗/
new graph = gb new graph (nverts);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "perms(%ld,%ld,%ld,%ld,%ld,%lu,%d)",n0 ,n1 ,n2 ,n3 ,n4 ,max inv ,

directed ? 1 : 0);
strcpy (new graph⃗util types , "VVZZZZZZZZZZZZ"); /∗ hash table will be used ∗/

}
This code is used in section 43.

47. After multiplication by (1 − zk+s)/(1 − zk), the coefficients of the power series will be nonnegative,
because they are the coefficients of a z-multinomial coefficient.

⟨Multiply the power series coefficients by
∏

1≤k≤nj
(1− zs+k)/(1− zk) 47 ⟩ ≡

for (k = 1; k ≤ nn [j]; k++) { register long ii ;

for (i = max inv , ii = i− k − s; ii ≥ 0; ii −−, i−−) coef [i] −= coef [ii];
for (i = k, ii = 0; i ≤ max inv ; i++, ii ++) {
coef [i] += coef [ii];
if (coef [i] > 1000000000) panic(very bad specs + 1); /∗ way too big ∗/

}
}

This code is used in section 46.

20 PERMUTATION GRAPHS GB BASIC §48

48. As we generate the permutations, we maintain a table (y1, . . . , yn), where yk is the number of inversions
whose first element is the kth element of the multiset. For example, if the multiset is {0, 0, 1, 2} and the
current permutation is (2, 0, 1, 0), the inversion table is (y1, y2, y3, y4) = (0, 0, 1, 3). Clearly 0 ≤ yk < k, and
yk ≤ yk−1 when the kth element of the multiset is the same as the (k − 1)st element. These conditions are
necessary and sufficient to define a valid inversion table. We will generate permutations in lexicographic
order of their inversion tables.
For convenience, we set up another array z, which holds the initial inversion-free permutation.

⟨Name the permutations and create the arcs or edges 48 ⟩ ≡
{ register long ∗xtab , ∗ytab , ∗ztab ; /∗ permutations and their inversions ∗/
long m = 0; /∗ current number of inversions ∗/
⟨ Initialize xtab , ytab , and ztab 49 ⟩;
v = new graph⃗vertices ;
while (1) {
⟨Assign a symbolic name for (x1, . . . , xn) to vertex v 52 ⟩;
⟨Create arcs or edges from previous permutations to v 53 ⟩;
v++;
⟨Advance to the next perm; goto last if there are no more solutions 50 ⟩;

}
last : if (v ̸= new graph⃗vertices + new graph⃗n) panic(impossible); /∗ can’t happen ∗/
gb free (working storage);

}
This code is used in section 43.

49. ⟨ Initialize xtab , ytab , and ztab 49 ⟩ ≡
xtab = gb typed alloc(3 ∗ n+ 3, long,working storage);
if (gb trouble code) { /∗ can’t allocate xtab ∗/
gb recycle (new graph); panic(no room + 2); }

ytab = xtab + (n+ 1);
ztab = ytab + (n+ 1);
for (j = 0, k = 1, s = nn [0]; ; k++) {
xtab [k] = ztab [k] = j; /∗ ytab [k] = 0 ∗/
if (k ≡ s) {
if (++j > d) break;
else s += nn [j];

}
}

This code is used in section 48.

§50 GB BASIC PERMUTATION GRAPHS 21

50. Here is the heart of the permutation logic. We find the largest k such that yk can legitimately be
increased by 1. When we encounter a k for which yk cannot be increased, we set yk = 0 and adjust the x’s
accordingly. If no yk can be increased, we are done.

⟨Advance to the next perm; goto last if there are no more solutions 50 ⟩ ≡
for (k = n; k; k−−) {
if (m < max inv ∧ ytab [k] < k − 1)
if (ytab [k] < ytab [k − 1] ∨ ztab [k] > ztab [k − 1]) goto move ;

if (ytab [k]) {
for (j = k − ytab [k]; j < k; j++) xtab [j] = xtab [j + 1];
m −= ytab [k];
ytab [k] = 0;
xtab [k] = ztab [k];

}
}
goto last ;

move : j = k − ytab [k]; /∗ the current location of the kth element, zk ∗/
xtab [j] = xtab [j − 1]; xtab [j − 1] = ztab [k];
ytab [k]++; m++;

This code is used in section 48.

51. A permutation is encoded as a sequence of nonblank characters, using an abbreviated copy of the
imap code from GB IO and omitting the characters that need to be quoted within strings. If the number of
distinct elements in the multiset is at most 62, only digits and letters will appear in the vertex name.

⟨Private variables 3 ⟩ +≡
static char ∗short imap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvw\

xyz_^~&@,;.:?!%#$+−*/|<=>()[]{}‘’";

52. ⟨Assign a symbolic name for (x1, . . . , xn) to vertex v 52 ⟩ ≡
{ register char ∗p;
register long ∗q;
for (p = &buffer [n− 1], q = &xtab [n]; q > xtab ; p−−, q−−) ∗p = short imap [∗q];
v⃗ name = gb save string (buffer);
hash in (v); /∗ enter v⃗ name into the hash table (via utility fields u, v) ∗/

}
This code is used in section 48.

53. Since we are generating the vertices in lexicographic order of their inversions, it is easy to identify all
adjacent vertices that precede the current setting of (x1, . . . , xn). We locate them via their symbolic names.

⟨Create arcs or edges from previous permutations to v 53 ⟩ ≡
for (j = 1; j < n; j++)
if (xtab [j] > xtab [j + 1]) { register Vertex ∗u; /∗ previous vertex adjacent to v ∗/

buffer [j − 1] = short imap [xtab [j + 1]]; buffer [j] = short imap [xtab [j]];
u = hash out (buffer);
if (u ≡ Λ) panic(impossible + 2); /∗ can’t happen ∗/
if (directed) gb new arc(u, v, 1L);
else gb new edge (u, v, 1L);
buffer [j − 1] = short imap [xtab [j]]; buffer [j] = short imap [xtab [j + 1]];

}
This code is used in section 48.

22 PARTITION GRAPHS GB BASIC §54

54. Partition graphs. The subroutine call parts (n,max parts ,max size , directed) creates a graph whose
vertices represent the different ways to partition the integer n into at most max parts parts, where each part
is at most max size . Two partitions are adjacent in the graph if one can be obtained from the other by
combining two parts. Each arc has length 1.
For example, the partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

Here 5 is adjacent to 4+ 1 and to 3+ 2; 4+ 1 is adjacent also to 3+ 1+ 1 and to 2+ 2+ 1; 3+ 2 is adjacent
also to 3 + 1 + 1 and to 2 + 2 + 1; etc. If max size is 3, the partitions 5 and 4 + 1 would not be included in
the graph. If max parts is 3, the partitions 2 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1 would not be included.
If max parts or max size are zero, they are reset to be equal to n so that they make no restriction on the

partitions.
If directed is nonzero, the graph will contain only directed arcs from partitions to their neighbors that

have exactly one more part.
The special case when we want to generate all p(n) partitions of the integer n can be obtained by calling

all parts (n, directed).

⟨ gb_basic.h 1 ⟩ +≡
#define all parts (n, directed) parts ((long)(n), 0L, 0L, (long)(directed))

55. The program for parts is very similar in structure to the program for perms already considered.

⟨Basic subroutines 8 ⟩ +≡
Graph ∗parts (n,max parts ,max size , directed)

unsigned long n; /∗ the number being partitioned ∗/
unsigned long max parts ; /∗ maximum number of parts ∗/
unsigned long max size ; /∗ maximum size of each part ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
if (max parts ≡ 0 ∨max parts > n) max parts = n;
if (max size ≡ 0 ∨max size > n) max size = n;
if (max parts > MAX_D) panic(bad specs); /∗ too many parts allowed ∗/
⟨Create a graph with one vertex for each partition 56 ⟩;
⟨Name the partitions and create the arcs or edges 57 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ doggone it, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§56 GB BASIC PARTITION GRAPHS 23

56. The number of vertices is the coefficient of zn in the z-binomial coefficient
(
m+p
m

)
z
, where m =

max parts and p = max size . This coefficient is calculated as in the perms routine.

⟨Create a graph with one vertex for each partition 56 ⟩ ≡
{ long nverts ; /∗ the number of vertices ∗/
register long ∗coef = gb typed alloc(n+ 1, long,working storage);

if (gb trouble code) panic(no room + 1); /∗ can’t allocate coef array ∗/
coef [0] = 1;
for (k = 1; k ≤ max parts ; k++) {
for (j = n, i = n− k −max size ; i ≥ 0; i−−, j−−) coef [j] −= coef [i];
for (j = k, i = 0; j ≤ n; i++, j++) {
coef [j] += coef [i];
if (coef [j] > 1000000000) panic(very bad specs); /∗ way too big ∗/

}
}
nverts = coef [n];
gb free (working storage); /∗ recycle the coef array ∗/
new graph = gb new graph (nverts);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "parts(%lu,%lu,%lu,%d)", n,max parts ,max size , directed ? 1 : 0);
strcpy (new graph⃗util types , "VVZZZZZZZZZZZZ"); /∗ hash table will be used ∗/

}
This code is used in section 55.

57. As we generate the partitions, we maintain the numbers σj = n− (x1 + · · ·+ xj−1) = xj + xj+1 + · · · ,
somewhat as we did in the simplex routine. We set x0 = max size and yj = max parts + 1− j; then when
values (x1, . . . , xj−1) are given, the conditions

σj/yj ≤ xj ≤ σj , xj ≤ xj−1

characterize the legal values of xj .

⟨Name the partitions and create the arcs or edges 57 ⟩ ≡
v = new graph⃗vertices ;
xx [0] = max size ; sig [1] = n;
for (k = max parts , s = 1; k > 0; k−−, s++) yy [k] = s;
if (max size ∗max parts ≥ n) {
k = 1; xx [1] = (n− 1)/max parts + 1; /∗ ⌈n/max parts⌉ ∗/
while (1) {
⟨Complete the partial solution (x1, . . . , xk) 58 ⟩;
⟨Assign the name x1 + · · ·+ xd to vertex v 60 ⟩;
⟨Create arcs or edges from v to previous partitions 61 ⟩;
v++;
⟨Advance to the next partial solution (x1, . . . , xk), where k is as large as possible; goto last if there

are no more solutions 59 ⟩;
}

}
last : if (v ̸= new graph⃗vertices + new graph⃗n) panic(impossible); /∗ can’t happen ∗/
This code is used in section 55.

24 PARTITION GRAPHS GB BASIC §58

58. ⟨Complete the partial solution (x1, . . . , xk) 58 ⟩ ≡
for (s = sig [k]− xx [k], k++; s; k++) {
sig [k] = s;
xx [k] = (s− 1)/yy [k] + 1;
s −= xx [k];

}
d = k − 1; /∗ the smallest part is xd ∗/

This code is used in section 57.

59. Here we seek the largest k such that xk can be increased without violating the necessary and sufficient
conditions stated earlier.

⟨Advance to the next partial solution (x1, . . . , xk), where k is as large as possible; goto last if there are no
more solutions 59 ⟩ ≡

if (d ≡ 1) goto last ;
for (k = d− 1; ; k−−) {
if (xx [k] < sig [k] ∧ xx [k] < xx [k − 1]) break;
if (k ≡ 1) goto last ;

}
xx [k]++;

This code is used in section 57.

60. ⟨Assign the name x1 + · · ·+ xd to vertex v 60 ⟩ ≡
{ register char ∗p = buffer ; /∗ string pointer ∗/
for (k = 1; k ≤ d; k++) {

sprintf (p, "+%ld", xx [k]);
while (∗p) p++;

}
v⃗ name = gb save string (&buffer [1]); /∗ omit buffer [0], which is ’+’ ∗/
hash in (v); /∗ enter v⃗ name into the hash table (via utility fields u, v) ∗/

}
This code is used in section 57.

61. Since we are generating the partitions in lexicographic order of their parts, it is reasonably easy to
identify all adjacent vertices that precede the current setting of (x1, . . . , xd), by splitting xj into two parts
when xj ̸= xj+1. We locate previous partitions via their symbolic names.

⟨Create arcs or edges from v to previous partitions 61 ⟩ ≡
if (d < max parts) {
xx [d+ 1] = 0;
for (j = 1; j ≤ d; j++) {
if (xx [j] ̸= xx [j + 1]) { long a, b;

for (b = xx [j]/2, a = xx [j]− b; b; a++, b−−) ⟨Generate a subpartition (n1, . . . , nd+1) by splitting
xj into a+ b, and make that subpartition adjacent to v 62 ⟩;

}
nn [j] = xx [j];

}
}

This code is used in section 57.

§62 GB BASIC PARTITION GRAPHS 25

62. The values of (x1, . . . , xj−1) have already been copied into (n1, . . . , nj−1). Our job is to copy the
smaller parts (xj+1, . . . , xd) while inserting a and b in their proper places, knowing that a ≥ b.

⟨Generate a subpartition (n1, . . . , nd+1) by splitting xj into a + b, and make that subpartition adjacent
to v 62 ⟩ ≡

{ register Vertex ∗u; /∗ previous vertex adjacent to v ∗/
register char ∗p = buffer ;

for (k = j + 1; xx [k] > a; k++) nn [k − 1] = xx [k];
nn [k − 1] = a;
for (; xx [k] > b; k++) nn [k] = xx [k];
nn [k] = b;
for (; k ≤ d; k++) nn [k + 1] = xx [k];
for (k = 1; k ≤ d+ 1; k++) {

sprintf (p, "+%ld",nn [k]);
while (∗p) p++;

}
u = hash out (&buffer [1]);
if (u ≡ Λ) panic(impossible + 2); /∗ can’t happen ∗/
if (directed) gb new arc(v, u, 1L);
else gb new edge (v, u, 1L);

}
This code is used in section 61.

26 BINARY TREE GRAPHS GB BASIC §63

63. Binary tree graphs. The subroutine call binary (n,max height , directed) creates a graph whose
vertices represent the binary trees with n internal nodes and with all leaves at a distance that is at most
max height from the root. Two binary trees are adjacent in the graph if one can be obtained from the other
by a single application of the associative law for binary operations, i.e., by replacing some subtree of the
form (α ·β) ·γ by the subtree α · (β ·γ). (This transformation on binary trees is often called a “rotation.”) If
the directed parameter is nonzero, the directed arcs go from a tree containing (α · β) · γ to a tree containing
α · (β · γ) in its place; otherwise the graph is undirected. Each arc has length 1.
For example, the binary trees with three internal nodes form a circuit of length 5. They are

(a · b) · (c · d), a · (b · (c · d)), a · ((b · c) · d), (a · (b · c)) · d, ((a · b) · c) · d,

if we use infix notation and name the leaves (a, b, c, d) from left to right. Here each tree is related to its two
neighbors by associativity. The first and last trees are also related in the same way.
If max height = 0, it is changed to n, which means there is no restriction on the height of a leaf. In this

case the graph will have exactly
(
2n+1

n

)
/(2n + 1) vertices; furthermore, each vertex will have exactly n − 1

neighbors, because a rotation will be possible just above every internal node except the root. The graph
in this case can also be interpreted geometrically: The vertices are in one-to-one correspondence with the
triangulations of a regular (n + 2)-gon; two triangulations are adjacent if and only if one is obtained from
the other by replacing the pair of adjacent triangles ABC,DCB by the pair ADC,BDA.
The partial ordering corresponding to the directed graph on

(
2n+1

n

)
/(2n+1) vertices created by all trees (n, 1)

is a lattice with interesting properties. See Huang and Tamari, Journal of Combinatorial Theory A13 (1972),
7–13.

⟨ gb_basic.h 1 ⟩ +≡
#define all trees (n, directed) binary ((long)(n), 0L, (long)(directed))

64. The program for binary is very similar in structure to the program for parts already considered. But
the details are more exciting.

⟨Basic subroutines 8 ⟩ +≡
Graph ∗binary (n,max height , directed)

unsigned long n; /∗ the number of internal nodes ∗/
unsigned long max height ; /∗ maximum height of a leaf ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
if (2 ∗ n+ 2 > BUF_SIZE) panic(bad specs); /∗ n is too huge for us ∗/
if (max height ≡ 0 ∨max height > n) max height = n;
if (max height > 30) panic(very bad specs); /∗ more than a billion vertices ∗/
⟨Create a graph with one vertex for each binary tree 65 ⟩;
⟨Name the trees and create the arcs or edges 67 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ uff da, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§65 GB BASIC BINARY TREE GRAPHS 27

65. The number of vertices is the coefficient of zn in the power series Gh, where h = max height and Gh

satisfies the recurrence
G0 = 1, Gh+1 = 1 + zG2

h.

The coefficients of G5 are ≤ 55308, but the coefficients of G6 are much larger; they exceed one billion
when 28 ≤ n ≤ 49, and they exceed one million when 17 ≤ n ≤ 56. In order to avoid overflow during this
calculation, we use a special method when h ≥ 6 and n ≥ 20: In such cases, graphs of reasonable size arise

only if n ≥ 2h − 7, and we look at the coefficient of z−(2h−1−n) in Rh = Gh/z
2h−1, which is a power series

in z−1 defined by the recurrence

R0 = 1, Rh+1 = R2
h + z1−2h+1

.

⟨Create a graph with one vertex for each binary tree 65 ⟩ ≡
{ long nverts ; /∗ the number of vertices ∗/
if (n ≥ 20 ∧max height ≥ 6) ⟨Compute nverts using the R series 66 ⟩
else {
nn [0] = nn [1] = 1;
for (k = 2; k ≤ n; k++) nn [k] = 0;
for (j = 2; j ≤ max height ; j++)

for (k = n− 1; k; k−−) {
for (s = 0, i = k; i ≥ 0; i−−) s += nn [i] ∗ nn [k − i]; /∗ overflow impossible ∗/
nn [k + 1] = s;

}
nverts = nn [n];

}
new graph = gb new graph (nverts);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "binary(%lu,%lu,%d)", n,max height , directed ? 1 : 0);
strcpy (new graph⃗util types , "VVZZZZZZZZZZZZ"); /∗ hash table will be used ∗/

}
This code is used in section 64.

28 BINARY TREE GRAPHS GB BASIC §66

66. The smallest nontrivial graph that is unilaterally disallowed by this procedure on the grounds of size
limitations occurs when max height = 6 and n = 20; it has 14,162,220 vertices.

⟨Compute nverts using the R series 66 ⟩ ≡
{ register float ss ;

d = (1L ≪ max height)− 1− n;
if (d > 8) panic(bad specs + 1); /∗ too many vertices ∗/
if (d < 0) nverts = 0;
else {
nn [0] = nn [1] = 1;
for (k = 2; k ≤ d; k++) nn [k] = 0;
for (j = 2; j ≤ max height ; j++) {

for (k = d; k; k−−) {
for (ss = 0.0, i = k; i ≥ 0; i−−) ss += ((float) nn [i]) ∗ ((float) nn [k − i]);
if (ss > MAX_NNN) panic(very bad specs + 1); /∗ way too big ∗/
for (s = 0, i = k; i ≥ 0; i−−) s += nn [i] ∗ nn [k − i]; /∗ overflow impossible ∗/
nn [k] = s;

}
i = (1L ≪ j)− 1;

if (i ≤ d) nn [i]++; /∗ add z1−2j ∗/
}
nverts = nn [d];

}
}

This code is used in section 65.

§67 GB BASIC BINARY TREE GRAPHS 29

67. We generate the trees in lexicographic order of their Polish prefix notation, encoded in binary notation
as x0x1 . . . x2n, using ‘1’ for an internal node and ‘0’ for a leaf. For example, the five trees when n = 3 are

1010100, 1011000, 1100100, 1101000, 1110000,

in lexicographic order. The algorithm for lexicographic generation maintains three auxiliary arrays lj , yj ,
and σj , where

σj = n− j +

j−1∑
i=0

xi = −1 +

2n∑
i=j

(1− xi)

is one less than the number of 0’s (leaves) in (xj , . . . , x2n). The values of lj and yj are harder to describe
formally; lj is 2h−l when h = max height and when xj represents a node at level l of the tree, based on
the values of (x0, . . . , xj−1). The value of yj is a binary encoding of tree levels in which an internal node
has not yet received a right child; yj is also the maximum number of future leaves that can be produced by
previously specified internal nodes without exceeding the maximum height. The number of 1-bits in yj is
the minimum number of future leaves, based on previous specifications.
Therefore if σj > yj , xj is forced to be 1. If lj = 1, xj is forced to be 0. If the number of 1-bits of yj is

equal to σj , xj is forced to be 0. Otherwise xj can be either 0 or 1, and it will be possible to complete the
partial solution x0 . . . xj to a full Polish prefix code x0 . . . x2n.

For example, here are the arrays for one of the binary trees that is generated when n = h = 3:

j = 0 1 2 3 4 5 6
lj = 8 4 2 2 1 1 4
yj = 0 4 6 4 5 4 0
σj = 3 3 3 2 2 1 0
xj = 1 1 0 1 0 0 0

If xj = 1 and j < 2n, we have lj+1 = lj/2, yj+1 = yj + lj+1, and σj+1 = σj . If xj = 0 and j < 2n, we have
lj+1 = 2t, yj+1 = yj − 2t, and σj+1 = σj − 1, where 2t is the least power of 2 in the binary representation
of yj . It is not difficult to prove by induction that σj < yj + lj , assuming that n < 2h.

⟨Name the trees and create the arcs or edges 67 ⟩ ≡
{ register long ∗xtab , ∗ytab , ∗ltab , ∗stab ;
⟨ Initialize xtab , ytab , ltab , and stab ; also set d = 2n 68 ⟩;
v = new graph⃗vertices ;
if (ltab [0] > n) {
k = 0; xtab [0] = n ? 1 : 0;
while (1) {

⟨Complete the partial tree x0 . . . xk 69 ⟩;
⟨Assign a Polish prefix code name to vertex v 71 ⟩;
⟨Create arcs or edges from v to previous trees 72 ⟩;
v++;
⟨Advance to the next partial tree x0 . . . xk, where k is as large as possible; goto last if there are

no more solutions 70 ⟩;
}

}
}

last : if (v ̸= new graph⃗vertices + new graph⃗n) panic(impossible); /∗ can’t happen ∗/
gb free (working storage);

This code is used in section 64.

30 BINARY TREE GRAPHS GB BASIC §68

68. ⟨ Initialize xtab , ytab , ltab , and stab ; also set d = 2n 68 ⟩ ≡
xtab = gb typed alloc(8 ∗ n+ 4, long,working storage);
if (gb trouble code) { /∗ no room for xtab ∗/
gb recycle (new graph); panic(no room + 2); }

d = n+ n;
ytab = xtab + (d+ 1);
ltab = ytab + (d+ 1);
stab = ltab + (d+ 1);
ltab [0] = 1L ≪ max height ;
stab [0] = n; /∗ ytab [0] = 0 ∗/

This code is used in section 67.

69. ⟨Complete the partial tree x0 . . . xk 69 ⟩ ≡
for (j = k + 1; j ≤ d; j++) {
if (xtab [j − 1]) {
ltab [j] = ltab [j − 1] ≫ 1;
ytab [j] = ytab [j − 1] + ltab [j];
stab [j] = stab [j − 1];

} else {
ytab [j] = ytab [j − 1] & (ytab [j − 1]− 1); /∗ remove least significant 1-bit ∗/
ltab [j] = ytab [j − 1]− ytab [j];
stab [j] = stab [j − 1]− 1;

}
if (stab [j] ≤ ytab [j]) xtab [j] = 0;
else xtab [j] = 1; /∗ this is the lexicographically smallest completion ∗/

}
This code is used in section 67.

70. As in previous routines, we seek the largest k such that xk can be increased without violating the
necessary and sufficient conditions stated earlier.

⟨Advance to the next partial tree x0 . . . xk, where k is as large as possible; goto last if there are no more
solutions 70 ⟩ ≡

for (k = d− 1; ; k−−) {
if (k ≤ 0) goto last ; /∗ this happens only when n ≤ 1 ∗/
if (xtab [k]) break; /∗ find rightmost 1 ∗/

}
for (k−−; ; k−−) {
if (xtab [k] ≡ 0 ∧ ltab [k] > 1) break;
if (k ≡ 0) goto last ;

}
xtab [k]++;

This code is used in section 67.

§71 GB BASIC BINARY TREE GRAPHS 31

71. In the name field, we encode internal nodes of the binary tree by ‘.’ and leaves by ‘x’. Thus the five
trees shown above in binary code will be named

.x.x.xx, .x..xxx, ..xx.xx, ..x.xxx, ...xxxx,

respectively.

⟨Assign a Polish prefix code name to vertex v 71 ⟩ ≡
{ register char ∗p = buffer ; /∗ string pointer ∗/
for (k = 0; k ≤ d; k++, p++) ∗p = (xtab [k] ? ’.’ : ’x’);
v⃗ name = gb save string (buffer);
hash in (v); /∗ enter v⃗ name into the hash table (via utility fields u, v) ∗/

}
This code is used in section 67.

72. Since we are generating the trees in lexicographic order of their Polish prefix notation, it is relatively
easy to find all pairs of trees that are adjacent via one application of the associative law: We simply replace
a substring of the form ..αβ by .α.β, when α and β are Polish prefix strings. The result comes earlier in
lexicographic order, so it will be an existing vertex unless it violates the max height restriction.

⟨Create arcs or edges from v to previous trees 72 ⟩ ≡
for (j = 0; j < d; j++)
if (xtab [j] ≡ 1 ∧ xtab [j + 1] ≡ 1) {

for (i = j + 1, s = 0; s ≥ 0; s += (xtab [i+ 1] ≪ 1)− 1, i++) xtab [i] = xtab [i+ 1];
xtab [i] = 1;
{ register char ∗p = buffer ; /∗ string pointer ∗/
register Vertex ∗u;
for (k = 0; k ≤ d; k++, p++) ∗p = (xtab [k] ? ’.’ : ’x’);
u = hash out (buffer);
if (u) {
if (directed) gb new arc(v, u, 1L);
else gb new edge (v, u, 1L);

}
}
for (i−−; i > j; i−−) xtab [i+ 1] = xtab [i]; /∗ restore xtab ∗/
xtab [i+ 1] = 1;

}
This code is used in section 67.

32 COMPLEMENTING AND COPYING GB BASIC §73

73. Complementing and copying. We have seen how to create a wide variety of basic graphs with
the board , simplex , subsets , perms , parts , and binary procedures. The remaining routines of GB BASIC are
somewhat different. They transform existing graphs into new ones, thereby presenting us with an almost
mind-boggling array of further possibilities.
The first of these transformations is perhaps the simplest. It complements a given graph, making

vertices adjacent if and only if they were previously nonadjacent. More precisely, the subroutine call
complement (g, copy , self , directed) returns a graph with the same vertices as g, but with complemented
arcs. If self ̸= 0, the new graph will have a self-loop from a vertex v to itself when the original graph did
not; if self = 0, the new graph will have no self-loops. If directed ̸= 0, the new graph will have an arc from
u to v when the original graph did not; if directed = 0, the new graph will be undirected, and it will have an
edge between u and v when the original graph did not. In the latter case, the original graph should also be
undirected (that is, its arcs should come in pairs, as described in the gb new edge routine of GB GRAPH).
If copy ̸= 0, a double complement will actually be done. This means that the new graph will essentially

be a copy of the old, except that duplicate arcs (and possibly self-loops) will be removed. Regardless of
the value of copy , information that might have been present in the utility fields will not be copied, and arc
lengths will all be set to 1.
One possibly useful feature of the graphs returned by complement is worth noting. The vertices adjacent

to v, namely the list

v⃗ arcs⃗ tip , v⃗ arcs⃗ next⃗ tip , v⃗ arcs⃗ next⃗ next⃗ tip , . . . ,

will be in strictly decreasing order (except in the case of an undirected self-loop, when v itself will appear
twice in succession).

74. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗complement (g, copy , self , directed)

Graph ∗g; /∗ graph to be complemented ∗/
long copy ; /∗ should we double-complement? ∗/
long self ; /∗ should we produce self-loops? ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register long n;
register Vertex ∗u;
register siz t delta ; /∗ difference in memory addresses ∗/
if (g ≡ Λ) panic(missing operand); /∗ where’s g? ∗/
⟨Set up a graph with the vertices of g 75 ⟩;
sprintf (buffer , ",%d,%d,%d)", copy ? 1 : 0, self ? 1 : 0, directed ? 1 : 0);
make compound id (new graph , "complement(", g, buffer);
⟨ Insert complementary arcs or edges 76 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ worse luck, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§75 GB BASIC COMPLEMENTING AND COPYING 33

75. In several of the following routines, it is efficient to circumvent C’s normal rules for pointer arithmetic,
and to use the fact that the vertices of a graph being copied are a constant distance away in memory from
the vertices of its clone.

#define vert offset (v, delta) ((Vertex ∗)(((siz t) v) + delta))

⟨Set up a graph with the vertices of g 75 ⟩ ≡
n = g⃗ n;
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
delta = ((siz t)(new graph⃗vertices))− ((siz t)(g⃗ vertices));
for (u = new graph⃗vertices , v = g⃗ vertices ; v < g⃗ vertices + n; u++, v++)
u⃗ name = gb save string (v⃗ name);

This code is used in sections 74, 78, and 81.

76. A temporary utility field in the new graph is used to remember which vertices are adjacent to a given
vertex in the old one. We stamp the tmp field of v with a pointer to u when there’s an arc from u to v.

#define tmp u.V /∗ utility field u for temporary use as a vertex pointer ∗/
⟨ Insert complementary arcs or edges 76 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + n; v++) { register Vertex ∗vv ;
u = vert offset (v, delta); /∗ vertex in new graph corresponding to v in g ∗/
{ register Arc ∗a;
for (a = v⃗ arcs ; a; a = a⃗ next) vert offset (a⃗ tip , delta)⃗ tmp = u;

}
if (directed) {
for (vv = new graph⃗vertices ; vv < new graph⃗vertices + n; vv ++)

if ((vv⃗ tmp ≡ u ∧ copy) ∨ (vv⃗ tmp ̸= u ∧ ¬copy))
if (vv ̸= u ∨ self) gb new arc(u, vv , 1L);

} else {
for (vv = (self ? u : u+ 1); vv < new graph⃗vertices + n; vv ++)

if ((vv⃗ tmp ≡ u ∧ copy) ∨ (vv⃗ tmp ̸= u ∧ ¬copy)) gb new edge (u, vv , 1L);
}

}
for (v = new graph⃗vertices ; v < new graph⃗vertices + n; v++) v⃗ tmp = Λ;

This code is used in section 74.

34 GRAPH UNION AND INTERSECTION GB BASIC §77

77. Graph union and intersection. Another simple way to get new graphs from old ones is to take
the union or intersection of their sets of arcs. The subroutine call gunion (g, gg ,multi , directed) produces
a graph with the vertices and arcs of g together with the arcs of another graph gg . The subroutine call
intersection (g, gg ,multi , directed) produces a graph with the vertices of g but with only the arcs that appear
in both g and gg . In both cases we assume that gg has the same vertices as g, in the sense that vertices
in the same relative position from the beginning of the vertex array are considered identical. If the actual
number of vertices in gg exceeds the number in g, the extra vertices and all arcs touching them in gg are
suppressed.
The input graphs are assumed to be undirected, unless the directed parameter is nonzero. Peculiar results

might occur if you mix directed and undirected graphs, but the subroutines will not “crash” when they are
asked to produce undirected output from directed input.
If multi is nonzero, the new graph may have multiple edges: Suppose there are k1 arcs from u to v in g

and k2 such arcs in gg . Then there will be k1 + k2 in the union and min(k1, k2) in the intersection when
multi ̸= 0, but at most one in the union or intersection when multi = 0.
The lengths of arcs are copied to the union graph when multi ̸= 0; the minimum length of multiple arcs

is retained in the union when multi = 0.
The lengths of arcs in the intersection graph are a bit trickier. If multiple arcs occur in g, their minimum

length, l, is computed. Then we compute the maximum of l and the lengths of corresponding arcs in gg . If
multi = 0, only the minimum of those maxima will survive.

78. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗gunion (g, gg ,multi , directed)

Graph ∗g, ∗gg ; /∗ graphs to be united ∗/
long multi ; /∗ should we reproduce multiple arcs? ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register long n;
register Vertex ∗u;
register siz t delta , ddelta ; /∗ differences in memory addresses ∗/
if (g ≡ Λ ∨ gg ≡ Λ) panic(missing operand); /∗ where are g and gg? ∗/
⟨Set up a graph with the vertices of g 75 ⟩;
sprintf (buffer , ",%d,%d)",multi ? 1 : 0, directed ? 1 : 0);
make double compound id (new graph , "gunion(", g, ",", gg , buffer);
ddelta = ((siz t)(new graph⃗vertices))− ((siz t)(gg⃗vertices));
⟨ Insert arcs or edges present in either g or gg 79 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ uh oh, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§79 GB BASIC GRAPH UNION AND INTERSECTION 35

79. ⟨ Insert arcs or edges present in either g or gg 79 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + n; v++) {
register Arc ∗a;
register Vertex ∗vv = vert offset (v, delta); /∗ vertex in new graph corresponding to v in g ∗/
register Vertex ∗vvv = vert offset (vv ,−ddelta); /∗ vertex in gg corresponding to v in g ∗/
for (a = v⃗ arcs ; a; a = a⃗ next) {
u = vert offset (a⃗ tip , delta);
⟨ Insert a union arc or edge from vv to u, if appropriate 80 ⟩;

}
if (vvv < gg⃗vertices + gg⃗n)
for (a = vvv⃗arcs ; a; a = a⃗ next) {
u = vert offset (a⃗ tip , ddelta);
if (u < new graph⃗vertices + n) ⟨ Insert a union arc or edge from vv to u, if appropriate 80 ⟩;

}
}
for (v = new graph⃗vertices ; v < new graph⃗vertices + n; v++) v⃗ tmp = Λ, v⃗ tlen = Λ;

This code is used in section 78.

80. We use the tmp trick of complement to remember which arcs have already been recorded from u, and
we extend it so that we can maintain minimum lengths. Namely, uu⃗ tmp will equal u if and only if we have
already seen an arc from u to uu ; and if so, uu⃗ tlen will be one such arc. In the undirected case, uu⃗ tlen
will point to the first arc of an edge pair that touches u.
The only thing slightly nontrivial here is the way we keep undirected edges grouped in pairs. We generate

a new edge from vv to u only if vv ≤ u, and if equality holds we advance a so that we don’t see the self-loop
in both directions. Similar logic will be repeated in many of the programs below.

#define tlen z.A /∗ utility field z regarded as a pointer to an arc ∗/
⟨ Insert a union arc or edge from vv to u, if appropriate 80 ⟩ ≡

{ register Arc ∗b;
if (directed) {

if (multi ∨ u⃗ tmp ̸= vv) gb new arc(vv , u, a⃗ len);
else {
b = u⃗ tlen ;
if (a⃗ len < b⃗ len) b⃗ len = a⃗ len ;

}
u⃗ tmp = vv ; /∗ remember that we’ve seen this ∗/
u⃗ tlen = vv⃗arcs ;

} else if (u ≥ vv) {
if (multi ∨ u⃗ tmp ̸= vv) gb new edge (vv , u, a⃗ len);
else {
b = u⃗ tlen ;
if (a⃗ len < b⃗ len) b⃗ len = (b+ 1)⃗ len = a⃗ len ;

}
u⃗ tmp = vv ;
u⃗ tlen = vv⃗arcs ;
if (u ≡ vv ∧ a⃗ next ≡ a+ 1) a++; /∗ bypass second half of self-loop ∗/

}
}

This code is used in section 79.

36 GRAPH UNION AND INTERSECTION GB BASIC §81

81. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗intersection (g, gg ,multi , directed)

Graph ∗g, ∗gg ; /∗ graphs to be intersected ∗/
long multi ; /∗ should we reproduce multiple arcs? ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register long n;
register Vertex ∗u;
register siz t delta , ddelta ; /∗ differences in memory addresses ∗/
if (g ≡ Λ ∨ gg ≡ Λ) panic(missing operand); /∗ where are g and gg? ∗/
⟨Set up a graph with the vertices of g 75 ⟩;
sprintf (buffer , ",%d,%d)",multi ? 1 : 0, directed ? 1 : 0);
make double compound id (new graph , "intersection(", g, ",", gg , buffer);
ddelta = ((siz t)(new graph⃗vertices))− ((siz t)(gg⃗vertices));
⟨ Insert arcs or edges present in both g and gg 82 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ whoops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

82. Two more temporary utility fields are needed here.

#define mult v.I /∗ utility field v, counts multiplicity of arcs ∗/
#define minlen w.I /∗ utility field w, records the smallest length ∗/
⟨ Insert arcs or edges present in both g and gg 82 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + n; v++) { register Arc ∗a;
register Vertex ∗vv = vert offset (v, delta); /∗ vertex in new graph corresponding to v in g ∗/
register Vertex ∗vvv = vert offset (vv ,−ddelta); /∗ vertex in gg corresponding to v in g ∗/
if (vvv ≥ gg⃗vertices + gg⃗n) continue;
⟨Take note of all arcs from v 85 ⟩;
for (a = vvv⃗arcs ; a; a = a⃗ next) {

u = vert offset (a⃗ tip , ddelta);
if (u ≥ new graph⃗vertices + n) continue;
if (u⃗ tmp ≡ vv) { long l = u⃗ minlen ;

if (a⃗ len > l) l = a⃗ len ; /∗ maximum ∗/
if (u⃗ mult < 0) ⟨Update minimum of multiple maxima 84 ⟩
else ⟨Generate a new arc or edge for the intersection, and reduce the multiplicity 83 ⟩;

}
}

}
⟨Clear out the temporary utility fields 86 ⟩;

This code is used in section 81.

§83 GB BASIC GRAPH UNION AND INTERSECTION 37

83. ⟨Generate a new arc or edge for the intersection, and reduce the multiplicity 83 ⟩ ≡
{
if (directed) gb new arc(vv , u, l);
else {
if (vv ≤ u) gb new edge (vv , u, l);
if (vv ≡ u ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/

}
if (¬multi) {

u⃗ tlen = vv⃗arcs ;
u⃗ mult = −1;

} else if (u⃗ mult ≡ 0) u⃗ tmp = Λ;
else u⃗ mult −−;

}
This code is used in section 82.

84. We get here if and only if multi = 0 and gg has more than one arc from vv to u and g has at least
one arc from vv to u.

⟨Update minimum of multiple maxima 84 ⟩ ≡
{ register Arc ∗b = u⃗ tlen ; /∗ previous arc or edge from vv to u ∗/
if (l < b⃗ len) {

b⃗ len = l;
if (¬directed) (b+ 1)⃗ len = l;

}
}

This code is used in section 82.

85. ⟨Take note of all arcs from v 85 ⟩ ≡
for (a = v⃗ arcs ; a; a = a⃗ next) {
u = vert offset (a⃗ tip , delta);
if (u⃗ tmp ≡ vv) {

u⃗ mult ++;
if (a⃗ len < u⃗ minlen) u⃗ minlen = a⃗ len ;

} else u⃗ tmp = vv , u⃗ mult = 0, u⃗ minlen = a⃗ len ;
if (u ≡ vv ∧ ¬directed ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/

}
This code is used in section 82.

86. ⟨Clear out the temporary utility fields 86 ⟩ ≡
for (v = new graph⃗vertices ; v < new graph⃗vertices + n; v++) {
v⃗ tmp = Λ;
v⃗ tlen = Λ;
v⃗ mult = 0;
v⃗ minlen = 0;

}
This code is used in section 82.

38 LINE GRAPHS GB BASIC §87

87. Line graphs. The next operation in GB BASIC’s repertoire constructs the so-called line graph of a
given graph g. The subroutine that does this is invoked by calling ‘lines (g, directed)’.
If directed = 0, the line graph has one vertex for each edge of g; two vertices are adjacent if and only if

the corresponding edges have a common vertex.
If directed ̸= 0, the line graph has one vertex for each arc of g; there is an arc from vertex u to vertex v if

and only if the arc corresponding to u ends at the vertex that begins the arc corresponding to v.
All arcs of the line graph will have length 1.
Utility fields u.V and v.V of each vertex in the line graph will point to the vertices of g that define the

corresponding arc or edge, and w.A will point to the arc from u.V to v.V in g. In the undirected case we
will have u.V ≤ v.V .

⟨Basic subroutines 8 ⟩ +≡
Graph ∗lines (g, directed)

Graph ∗g; /∗ graph whose lines will become vertices ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register long m; /∗ the number of lines ∗/
register Vertex ∗u;
if (g ≡ Λ) panic(missing operand); /∗ where is g? ∗/
⟨Set up a graph whose vertices are the lines of g 89 ⟩;
if (directed) ⟨ Insert arcs of a directed line graph 92 ⟩
else ⟨ Insert edges of an undirected line graph 93 ⟩;
⟨Restore g to its pristine original condition 88 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ (sigh) we ran out of memory somewhere back there ∗/

}
return new graph ;

near panic : ⟨Recover from potential disaster due to bad data 90 ⟩;
}

88. We want to add a data structure to g so that the line graph can be built efficiently. But we also want
to preserve g so that it exhibits no traces of occupation when lines has finished its work. To do this, we will
move utility field v⃗ z temporarily into a utility field u⃗ z of the line graph, where u is the first vertex having
u⃗ u.V ≡ v, whenever such a u exists. Then we’ll set v⃗ map = u. We will then be able to find u when v is
given, and we’ll be able to cover our tracks later.
In the undirected case, further structure is needed. We will temporarily change the tip field in the second

arc of each edge pair so that it points to the line-graph vertex that points to the first arc of the pair.
The util types field of the graph does not indicate the fact that utility fields u.V , v.V , and w.A of each

vertex will be set, because those utility fields are pointers from the new graph to the original graph. The
save graph procedure does not deal with pointers between graphs.

#define map z.V /∗ the z field treated as a vertex pointer ∗/
⟨Restore g to its pristine original condition 88 ⟩ ≡
for (u = new graph⃗vertices , v = Λ; u < new graph⃗vertices +m; u++) {
if (u⃗ u.V ̸= v) {

v = u⃗ u.V ; /∗ original vertex of g ∗/
v⃗ map = u⃗ map ; /∗ restore original value of v⃗ z ∗/
u⃗ map = Λ;

}
if (¬directed) ((u⃗ w.A) + 1)⃗ tip = v;

}
This code is used in sections 87 and 90.

§89 GB BASIC LINE GRAPHS 39

89. Special care must be taken to avoid chaos when the user is trying to construct the undirected line
graph of a directed graph. Otherwise we might trash the memory, or we might leave the original graph in a
garbled state with pointers leading into supposedly free space.

⟨Set up a graph whose vertices are the lines of g 89 ⟩ ≡
m = (directed ? g⃗ m : (g⃗ m)/2);
new graph = gb new graph (m);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
make compound id (new graph , "lines(", g, directed ? ",1)" : ",0)");
u = new graph⃗vertices ;
for (v = g⃗ vertices + g⃗ n− 1; v ≥ g⃗ vertices ; v−−) { register Arc ∗a;
register long mapped = 0; /∗ has v⃗ map been set? ∗/
for (a = v⃗ arcs ; a; a = a⃗ next) { register Vertex ∗vv = a⃗ tip ;

if (¬directed) {
if (vv < v) continue;
if (vv ≥ g⃗ vertices + g⃗ n) goto near panic ; /∗ original graph not undirected ∗/

}
⟨Make u a vertex representing the arc a from v to vv 91 ⟩;
if (¬mapped) {
u⃗ map = v⃗ map ; /∗ z.V = map incorporates all bits of utility field z, whatever its type ∗/
v⃗ map = u;
mapped = 1;

}
u++;

}
}
if (u ̸= new graph⃗vertices +m) goto near panic ;

This code is used in section 87.

90. ⟨Recover from potential disaster due to bad data 90 ⟩ ≡
m = u− new graph⃗vertices ;
⟨Restore g to its pristine original condition 88 ⟩;
gb recycle (new graph);
panic(invalid operand); /∗ g did not obey the conventions for an undirected graph ∗/

This code is used in section 87.

91. The vertex names in the line graph are pairs of original vertex names, separated by ‘−−’ when
undirected, ‘−>’ when directed. If either of the original names is horrendously long, the villainous Procrustes
chops it off arbitrarily so that it fills at most half of the name buffer.

⟨Make u a vertex representing the arc a from v to vv 91 ⟩ ≡
u⃗ u.V = v;
u⃗ v.V = vv ;
u⃗ w.A = a;
if (¬directed) {
if (u ≥ new graph⃗vertices +m ∨ (a+ 1)⃗ tip ̸= v) goto near panic ;
if (v ≡ vv ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/
else (a+ 1)⃗ tip = u;

}
sprintf (buffer , "%.*s−%c%.*s", (BUF_SIZE − 3)/2, v⃗ name ,

directed ? ’>’ : ’−’, BUF_SIZE/2− 1, vv⃗name);
u⃗ name = gb save string (buffer);

This code is used in section 89.

40 LINE GRAPHS GB BASIC §92

92. ⟨ Insert arcs of a directed line graph 92 ⟩ ≡
for (u = new graph⃗vertices ; u < new graph⃗vertices +m; u++) {
v = u⃗ v.V ;
if (v⃗ arcs) { /∗ v⃗ map has been set up ∗/

v = v⃗ map ;
do {
gb new arc(u, v, 1L);
v++;

} while (v⃗ u.V ≡ u⃗ v.V);
}

}
This code is used in section 87.

93. An undirected line graph will contain no self-loops. It contains multiple edges only if the original graph
did; in that case, there are two edges joining a line to each of its parallel mates, because each mate hits both
of its endpoints.
The details of this section deserve careful study. We use the fact that the first vertices of the lines occur

in nonincreasing order.

⟨ Insert edges of an undirected line graph 93 ⟩ ≡
for (u = new graph⃗vertices ; u < new graph⃗vertices +m; u++) { register Vertex ∗vv ;
register Arc ∗a; register long mapped = 0;

v = u⃗ u.V ; /∗ we look first for prior lines that touch the first vertex ∗/
for (vv = v⃗ map ; vv < u; vv ++) gb new edge (u, vv , 1L);
v = u⃗ v.V ; /∗ then we look for prior lines that touch the other one ∗/
for (a = v⃗ arcs ; a; a = a⃗ next) {
vv = a⃗ tip ;
if (vv < u ∧ vv ≥ new graph⃗vertices) gb new edge (u, vv , 1L);
else if (vv ≥ v ∧ vv < g⃗ vertices + g⃗ n) mapped = 1;

}
if (mapped ∧ v > u⃗ u.V)

for (vv = v⃗ map ; vv⃗u.V ≡ v; vv ++) gb new edge (u, vv , 1L);
}

This code is used in section 87.

§94 GB BASIC GRAPH PRODUCTS 41

94. Graph products. Three ways have traditionally been used to define the product of two graphs. In
all three cases the vertices of the product graph are ordered pairs (v, v′), where v and v′ are vertices of the
original graphs; the difference occurs in the definition of arcs. Suppose g has m arcs and n vertices, while g′

has m′ arcs and n′ vertices. The cartesian product of g and g′ has mn′ +m′n arcs, namely from (u, u′) to
(v, u′) whenever there’s an arc from u to v in g, and from (u, u′) to (u, v′) whenever there’s an arc from u′

to v′ in g′. The direct product has mm′ arcs, namely from (u, u′) to (v, v′) in the same circumstances. The
strong product has both the arcs of the cartesian product and the direct product.
Notice that an undirected graph with m edges has 2m arcs. Thus the number of edges in the direct

product of two undirected graphs is twice the product of the number of edges in the individual graphs. A
self-loop in g will combine with an edge in g′ to make two parallel edges in the direct product.

The subroutine call product (g, gg , type , directed) produces the product graph of one of these three types,
where type = 0 for cartesian product, type = 1 for direct product, and type = 2 for strong product. The
length of an arc in the cartesian product is copied from the length of the original arc that it replicates; the
length of an arc in the direct product is the minimum of the two arc lengths that induce it. If directed = 0,
the product graph will be an undirected graph with edges consisting of consecutive arc pairs according to
the standard GraphBase conventions, and the input graphs should adhere to the same conventions.

⟨ gb_basic.h 1 ⟩ +≡
#define cartesian 0
#define direct 1
#define strong 2

95. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗product (g, gg , type , directed)

Graph ∗g, ∗gg ; /∗ graphs to be multiplied ∗/
long type ; /∗ cartesian , direct , or strong ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register Vertex ∗u, ∗vv ;
register long n; /∗ the number of vertices in the product graph ∗/
if (g ≡ Λ ∨ gg ≡ Λ) panic(missing operand); /∗ where are g and gg? ∗/
⟨Set up a graph with ordered pairs of vertices 96 ⟩;
if ((type & 1) ≡ 0) ⟨ Insert arcs or edges for cartesian product 97 ⟩;
if (type) ⟨ Insert arcs or edges for direct product 99 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ @¿∗#!, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

42 GRAPH PRODUCTS GB BASIC §96

96. We must be constantly on guard against running out of memory, especially when multiplying infor-
mation.
The vertex names in the product are pairs of original vertex names separated by commas. Thus, for

example, if you cross an econ graph with a roget graph, you can get vertices like "Financial␣services,\

␣mediocrity".

⟨Set up a graph with ordered pairs of vertices 96 ⟩ ≡
{ float test product = ((float)(g⃗ n)) ∗ ((float)(gg⃗n));
if (test product > MAX_NNN) panic(very bad specs); /∗ way too many vertices ∗/

}
n = (g⃗ n) ∗ (gg⃗n);
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
for (u = new graph⃗vertices , v = g⃗ vertices , vv = gg⃗vertices ;

u < new graph⃗vertices + n; u++) {
sprintf (buffer , "%.*s,%.*s", BUF_SIZE/2− 1, v⃗ name , (BUF_SIZE − 1)/2, vv⃗name);
u⃗ name = gb save string (buffer);
if (++vv ≡ gg⃗vertices + gg⃗n) vv = gg⃗vertices , v++; /∗ “carry” ∗/

}
sprintf (buffer , ",%d,%d)", (type ? 2 : 0)− (int)(type & 1), directed ? 1 : 0);
make double compound id (new graph , "product(", g, ",", gg , buffer);

This code is used in section 95.

97. ⟨ Insert arcs or edges for cartesian product 97 ⟩ ≡
{ register Vertex ∗uu , ∗uuu ;
register Arc ∗a;
register siz t delta ; /∗ difference in memory addresses ∗/
delta = ((siz t)(new graph⃗vertices))− ((siz t)(gg⃗vertices));
for (u = gg⃗vertices ; u < gg⃗vertices + gg⃗n; u++)
for (a = u⃗ arcs ; a; a = a⃗ next) {
v = a⃗ tip ;
if (¬directed) {
if (u > v) continue;
if (u ≡ v ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/

}
for (uu = vert offset (u, delta), vv = vert offset (v, delta);

uu < new graph⃗vertices + n; uu += gg⃗n, vv += gg⃗n)
if (directed) gb new arc(uu , vv , a⃗ len);
else gb new edge (uu , vv , a⃗ len);

}
⟨ Insert arcs or edges for first component of cartesian product 98 ⟩;

}
This code is used in section 95.

§98 GB BASIC GRAPH PRODUCTS 43

98. ⟨ Insert arcs or edges for first component of cartesian product 98 ⟩ ≡
for (u = g⃗ vertices , uu = new graph⃗vertices ; uu < new graph⃗vertices + n; u++, uu += gg⃗n)
for (a = u⃗ arcs ; a; a = a⃗ next) {
v = a⃗ tip ;
if (¬directed) {
if (u > v) continue;
if (u ≡ v ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/

}
vv = new graph⃗vertices + ((gg⃗n) ∗ (v − g⃗ vertices));
for (uuu = uu ; uuu < uu + gg⃗n; uuu++, vv ++)
if (directed) gb new arc(uuu , vv , a⃗ len);
else gb new edge (uuu , vv , a⃗ len);

}
This code is used in section 97.

99. ⟨ Insert arcs or edges for direct product 99 ⟩ ≡
{ Vertex ∗uu ; Arc ∗a;
siz t delta0 = ((siz t)(new graph⃗vertices))− ((siz t)(gg⃗vertices));
siz t del = (gg⃗n) ∗ sizeof (Vertex);
register siz t delta , ddelta ;

for (uu = g⃗ vertices , delta = delta0 ; uu < g⃗ vertices + g⃗ n; uu++, delta += del)
for (a = uu⃗arcs ; a; a = a⃗ next) {
vv = a⃗ tip ;
if (¬directed) {
if (uu > vv) continue;
if (uu ≡ vv ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/

}
ddelta = delta0 + del ∗ (vv − g⃗ vertices);
for (u = gg⃗vertices ; u < gg⃗vertices + gg⃗n; u++) { register Arc ∗aa ;
for (aa = u⃗ arcs ; aa ; aa = aa⃗next) { long length = a⃗ len ;

if (length > aa⃗ len) length = aa⃗ len ;
v = aa⃗ tip ;
if (directed) gb new arc(vert offset (u, delta), vert offset (v, ddelta), length);
else gb new edge (vert offset (u, delta), vert offset (v, ddelta), length);

}
}

}
}

This code is used in section 95.

44 INDUCED GRAPHS GB BASIC §100

100. Induced graphs. Another important way to transform a graph is to remove, identify, or split
some of its vertices. All of these operations are performed by the induced routine, which users can invoke
by calling ‘induced (g, description , self ,multi , directed)’.
Each vertex v of g should first be assigned an “induction code” in its field v⃗ ind , which is actually utility

field z. The induction code is 0 if v is to be eliminated; it is 1 if v is to be retained; it is k > 1 if v is to be
split into k nonadjacent vertices having the same neighbors as v did; and it is k < 0 if v is to be identified
with all other vertices having the same value of k.
For example, suppose g is a circuit with vertices {0, 1, . . . , 9}, where j is adjacent to k if and only if

k = (j ± 1) mod 10. If we set

0⃗ ind = 0, 1⃗ ind = 5⃗ ind = 9⃗ ind = −1, 2⃗ ind = 3⃗ ind = −2,
4⃗ ind = 6⃗ ind = 8⃗ ind = 1, and 7⃗ ind = 3,

the induced graph will have vertices {−1,−2, 4, 6, 7, 7′, 7′′, 8}. The vertices adjacent to 6, say, will be −1
(formerly 5), 7, 7′, and 7′′. The vertices adjacent to −1 will be those formerly adjacent to 1, 5, or 9, namely
−2 (formerly 2), 4, 6, and 8. The vertices adjacent to −2 will be those formerly adjacent to 2 or 3, namely
−1 (formerly 1), −2 (formerly 3), −2 (formerly 2), and 4. Duplicate edges will be discarded if multi ≡ 0,
and self-loops will be discarded if self ≡ 0.
The total number of vertices in the induced graph will be the sum of the positive ind fields plus the

absolute value of the most negative ind field. This rule implies, for example, that if at least one vertex has
ind = −5, the induced graph will always have a vertex −4, even though no ind field has been set to −4.
The description parameter is a string that will appear as part of the name of the induced graph; if

description = 0, this string will be empty. In the latter case, users are encouraged to assign a suitable name
to the id field of the induced graph themselves, characterizing the method by which the ind codes were set.
If the directed parameter is zero, the input graph will be assumed to be undirected, and the output graph

will be undirected.
When multi = 0, the length of an arc that represents multiple arcs will be the minimum of the multiple

arc lengths.

#define ind z.I

⟨ gb_basic.h 1 ⟩ +≡
#define ind z.I /∗ utility field z when used to induce a graph ∗/

§101 GB BASIC INDUCED GRAPHS 45

101. Here’s a simple example: To get a complete bipartite graph with parts of sizes n1 and n2 , we can
start with a trivial two-point graph and split its vertices into n1 and n2 parts.

⟨Applications of basic subroutines 101 ⟩ ≡
Graph ∗bi complete (n1 ,n2 , directed)

unsigned long n1 ; /∗ size of first part ∗/
unsigned long n2 ; /∗ size of second part ∗/
long directed ; /∗ should all arcs go from first part to second? ∗/

{ Graph ∗new graph = board (2L, 0L, 0L, 0L, 1L, 0L, directed);

if (new graph) {
new graph⃗vertices⃗ ind = n1 ;
(new graph⃗vertices + 1)⃗ ind = n2 ;
new graph = induced (new graph ,Λ, 0L, 0L, directed);
if (new graph) {

sprintf (new graph⃗ id , "bi_complete(%lu,%lu,%d)",
n1 ,n2 , directed ? 1 : 0);

mark bipartite (new graph ,n1);
}

}
return new graph ;

}
See also section 103.

This code is used in section 2.

102. The induced routine also provides a special feature not mentioned above: If the ind field of any
vertex v is IND_GRAPH or greater (where IND_GRAPH is a large constant, much larger than the number of
vertices that would fit in computer memory), then utility field v⃗ subst should point to a graph. A copy of
the vertices of that graph will then be substituted for v in the induced graph.
This feature extends the ordinary case when v⃗ ind > 0, which essentially substitutes an empty graph

for v.
If substitution is being used to replace all of g’s vertices by disjoint copies of some other graph g′, the

induced graph will be somewhat similar to a product graph. But it will not be the same as any of the three
types of output produced by product , because the relation between g and g′ is not symmetrical. Assuming
that no self-loops are present, and that graphs (g, g′) have respectively (m,m′) arcs and (n, n′) vertices, the
result of substituting g′ for all vertices of g has m′n+mn′2 arcs.

#define IND_GRAPH 1000000000 /∗ when ind is a billion or more, ∗/
#define subst y.G /∗ we’ll look at the subst field ∗/
⟨ gb_basic.h 1 ⟩ +≡
#define IND_GRAPH 1000000000
#define subst y.G

46 INDUCED GRAPHS GB BASIC §103

103. For example, we can use the IND_GRAPH feature to create a “wheel” of n vertices arranged cyclically,
all connected to one or more center points. In the directed case, the arcs will run from the center(s) to a
cycle; in the undirected case, the edges will join the center(s) to a circuit.

⟨Applications of basic subroutines 101 ⟩ +≡
Graph ∗wheel (n,n1 , directed)

unsigned long n; /∗ size of the rim ∗/
unsigned long n1 ; /∗ number of center points ∗/
long directed ; /∗ should all arcs go from center to rim and around? ∗/

{ Graph ∗new graph = board (2L, 0L, 0L, 0L, 1L, 0L, directed); /∗ trivial 2-vertex graph ∗/
if (new graph) {

new graph⃗vertices⃗ ind = n1 ;
(new graph⃗vertices + 1)⃗ ind = IND_GRAPH;
(new graph⃗vertices + 1)⃗ subst = board (n, 0L, 0L, 0L, 1L, 1L, directed); /∗ cycle or circuit ∗/
new graph = induced (new graph ,Λ, 0L, 0L, directed);
if (new graph) {

sprintf (new graph⃗ id , "wheel(%lu,%lu,%d)",
n,n1 , directed ? 1 : 0);

}
}
return new graph ;

}

104. ⟨ gb_basic.h 1 ⟩ +≡
extern Graph ∗bi complete ();
extern Graph ∗wheel (); /∗ standard applications of induced ∗/

105. ⟨Basic subroutines 8 ⟩ +≡
Graph ∗induced (g, description , self ,multi , directed)

Graph ∗g; /∗ graph marked for induction in its ind fields ∗/
char ∗description ; /∗ string to be mentioned in new graph⃗ id ∗/
long self ; /∗ should self-loops be permitted? ∗/
long multi ; /∗ should multiple arcs be permitted? ∗/
long directed ; /∗ should the graph be directed? ∗/

{ ⟨Vanilla local variables 9 ⟩
register Vertex ∗u;
register long n = 0; /∗ total number of vertices in induced graph ∗/
register long nn = 0; /∗ number of negative vertices in induced graph ∗/
if (g ≡ Λ) panic(missing operand); /∗ where is g? ∗/
⟨Set up a graph with the induced vertices 106 ⟩;
⟨ Insert arcs or edges for induced vertices 110 ⟩;
⟨Restore g to its original state 109 ⟩;
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ aargh, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

§106 GB BASIC INDUCED GRAPHS 47

106. ⟨Set up a graph with the induced vertices 106 ⟩ ≡
⟨Determine n and nn 107 ⟩;
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
⟨Assign names to the new vertices, and create a map from g to new graph 108 ⟩;
sprintf (buffer , ",%s,%d,%d,%d)",

description ? description : null string ,
self ? 1 : 0,multi ? 1 : 0, directed ? 1 : 0);

make compound id (new graph , "induced(", g, buffer);

This code is used in section 105.

107. ⟨Determine n and nn 107 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++)
if (v⃗ ind > 0) {

if (n > IND_GRAPH) panic(very bad specs); /∗ way too big ∗/
if (v⃗ ind ≥ IND_GRAPH) {

if (v⃗ subst ≡ Λ) panic(missing operand + 1); /∗ substitute graph is missing ∗/
n += v⃗ subst⃗ n;

} else n += v⃗ ind ;
} else if (v⃗ ind < −nn) nn = −(v⃗ ind);

if (n > IND_GRAPH ∨ nn > IND_GRAPH) panic(very bad specs + 1); /∗ gigantic ∗/
n += nn ;

This code is used in section 106.

48 INDUCED GRAPHS GB BASIC §108

108. The negative vertices get the negative number as their name. Split vertices get names with an optional
prime appended, if the ind field is 2; otherwise split vertex names are obtained by appending a colon and
an index number between 0 and ind − 1. The name of a vertex within a graph v⃗ subst is composed of the
name of v followed by a colon and the name within that graph.
We store the original ind field in the mult field of the first corresponding vertex in the new graph, and

change ind to point to that vertex. This convention makes it easy to determine the location of each vertex’s
clone or clones. Of course, if the original ind field is zero, we leave it zero (Λ), because it has no corresponding
vertex in the new graph.

⟨Assign names to the new vertices, and create a map from g to new graph 108 ⟩ ≡
for (k = 1, u = new graph⃗vertices ; k ≤ nn ; k++, u++) {
u⃗ mult = −k;
sprintf (buffer , "%ld",−k);
u⃗ name = gb save string (buffer);

}
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++)
if ((k = v⃗ ind) < 0) v⃗ map = (new graph⃗vertices)− (k + 1);
else if (k > 0) {

u⃗ mult = k;
v⃗ map = u;
if (k ≤ 2) {
u⃗ name = gb save string (v⃗ name);
u++;
if (k ≡ 2) {
sprintf (buffer , "%s’", v⃗ name);
u⃗ name = gb save string (buffer);
u++;

}
} else if (k ≥ IND_GRAPH) ⟨Make names and arcs for a substituted graph 114 ⟩
else
for (j = 0; j < k; j++, u++) {
sprintf (buffer , "%.*s:%ld", BUF_SIZE − 12, v⃗ name , j);
u⃗ name = gb save string (buffer);

}
}

This code is used in section 106.

109. ⟨Restore g to its original state 109 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++)
if (v⃗ map) v⃗ ind = v⃗ map⃗ mult ;

for (v = new graph⃗vertices ; v < new graph⃗vertices + n; v++) v⃗ u.I = v⃗ v.I = v⃗ z.I = 0;
/∗ clear tmp , mult , tlen ∗/

This code is used in section 105.

§110 GB BASIC INDUCED GRAPHS 49

110. The heart of the procedure to construct an induced graph is, of course, the part where we map the
arcs of g into arcs of new graph .

Notice that if v has a self-loop in the original graph and if v is being split into several vertices, it will
produce arcs between different clones of itself, but it will not produce self-loops unless self ̸= 0. In an
undirected graph, a loop from a vertex to itself will not produce multiple edges among its clones, even if
multi ̸= 0.
More precisely, if v has k clones u through u+ k− 1, an original directed arc from v to v will generate all

k2 possible arcs between them, except that the k self-loops will be eliminated when self ≡ 0. An original
undirected edge from v to v will generate

(
k
2

)
edges between distinct clones, together with k undirected

self-loops if self ̸= 0.

⟨ Insert arcs or edges for induced vertices 110 ⟩ ≡
for (v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++) {
u = v⃗ map ;
if (u) { register Arc ∗a; register Vertex ∗uu , ∗vv ;
k = u⃗ mult ;
if (k < 0) k = 1; /∗ k is the number of clones of v ∗/
else if (k ≥ IND_GRAPH) k = v⃗ subst⃗ n;
for (; k; k−−, u++) {
if (¬multi) ⟨Take note of existing edges that touch u 111 ⟩;
for (a = v⃗ arcs ; a; a = a⃗ next) {
vv = a⃗ tip ;
uu = vv⃗map ;
if (uu ≡ Λ) continue;
j = uu⃗mult ;
if (j < 0) j = 1; /∗ j is the number of clones of vv ∗/
else if (j ≥ IND_GRAPH) j = vv⃗subst⃗ n;
if (¬directed) {
if (vv < v) continue;
if (vv ≡ v) {
if (a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/
j = k, uu = u; /∗ also skip duplicate edges generated by self-loop ∗/

}
}
⟨ Insert arcs or edges from vertex u to vertices uu through uu + j − 1 112 ⟩;

}
}

}
}

This code is used in section 105.

111. Again we use the tmp and tlen trick of gunion to handle multiple arcs. (This trick explains why
the code in the previous section tries to generate as many arcs as possible from a single vertex u, before
changing u.)

⟨Take note of existing edges that touch u 111 ⟩ ≡
for (a = u⃗ arcs ; a; a = a⃗ next) {
a⃗ tip⃗ tmp = u;
if (directed ∨ a⃗ tip > u ∨ a⃗ next ≡ a+ 1) a⃗ tip⃗ tlen = a;
else a⃗ tip⃗ tlen = a+ 1;

}
This code is used in section 110.

50 INDUCED GRAPHS GB BASIC §112

112. ⟨ Insert arcs or edges from vertex u to vertices uu through uu + j − 1 112 ⟩ ≡
for (; j; j−−, uu++) {
if (u ≡ uu ∧ ¬self) continue;
if (uu⃗ tmp ≡ u ∧ ¬multi) ⟨Update the minimum arc length from u to uu , then continue 113 ⟩;
if (directed) gb new arc(u, uu , a⃗ len);
else gb new edge (u, uu , a⃗ len);
uu⃗ tmp = u;
uu⃗ tlen = ((directed ∨ u ≤ uu) ? u⃗ arcs : uu⃗arcs);

}
This code is used in section 110.

113. ⟨Update the minimum arc length from u to uu , then continue 113 ⟩ ≡
{ register Arc ∗b = uu⃗ tlen ; /∗ existing arc or edge from u to uu ∗/
if (a⃗ len < b⃗ len) {
b⃗ len = a⃗ len ; /∗ remember the minimum length ∗/
if (¬directed) (b+ 1)⃗ len = a⃗ len ;

}
continue;

}
This code is used in sections 112 and 114.

114. We have now accumulated enough experience to finish off the one remaining piece of program with
ease.

⟨Make names and arcs for a substituted graph 114 ⟩ ≡
{ register Graph ∗gg = v⃗ subst ;
register Vertex ∗vv = gg⃗vertices ;
register Arc ∗a;
siz t delta = ((siz t) u)− ((siz t) vv);

for (j = 0; j < v⃗ subst⃗ n; j++, u++, vv ++) {
sprintf (buffer , "%.*s:%.*s", BUF_SIZE/2− 1, v⃗ name , (BUF_SIZE − 1)/2, vv⃗name);
u⃗ name = gb save string (buffer);
for (a = vv⃗arcs ; a; a = a⃗ next) { register Vertex ∗vvv = a⃗ tip ;
Vertex ∗uu = vert offset (vvv , delta);

if (vvv ≡ vv ∧ ¬self) continue;
if (uu⃗ tmp ≡ u ∧ ¬multi) ⟨Update the minimum arc length from u to uu , then continue 113 ⟩;
if (¬directed) {
if (vvv < vv) continue;
if (vvv ≡ vv ∧ a⃗ next ≡ a+ 1) a++; /∗ skip second half of self-loop ∗/
gb new edge (u, uu , a⃗ len);

} else gb new arc(u, uu , a⃗ len);
uu⃗ tmp = u;
uu⃗ tlen = ((directed ∨ u ≤ uu) ? u⃗ arcs : uu⃗arcs);

}
}

}
This code is used in section 108.

§115 GB BASIC INDEX 51

115. Index. As usual, we close with an index that shows where the identifiers of gb basic are defined
and used.

a: 61, 76, 79, 82, 89, 93, 97, 99, 110, 114.
aa : 99.
all parts : 54.
all perms : 41.
all trees : 63.
alloc fault : 8, 26, 37, 43, 55, 64, 74, 78, 81,

87, 95, 105.
Arc: 76, 79, 80, 82, 84, 89, 93, 97, 99, 110,

113, 114.
arcs : 73, 76, 79, 80, 82, 83, 85, 89, 92, 93, 97,

98, 99, 110, 111, 112, 114.
Area: 3.
b: 61, 80, 84, 113.
bad specs : 12, 45, 55, 64, 66.
Bennett, Mary Katherine: 42.
bi complete : 101, 104.
binary : 1, 63, 64, 73.
Birkhoff, Garrett: 42.
board : 1, 6, 7, 8, 10, 20, 24, 34, 73, 101, 103.
BUF_SIZE: 5, 34, 44, 45, 64, 91, 96, 108, 114.
buffer : 5, 14, 34, 35, 52, 53, 60, 62, 71, 72, 74,

78, 81, 91, 96, 106, 108, 114.
cartesian : 94, 95.
character-set dependencies: 40.
circuit : 7.
coef : 29, 30, 46, 47, 56.
complement : 1, 73, 74, 80.
complete : 7.
copy : 73, 74, 76.
cycle : 7.
d: 9.
ddelta : 78, 79, 81, 82, 99.
del : 10, 16, 17, 18, 20, 99.
delta : 74, 75, 76, 78, 79, 81, 82, 85, 97, 99, 114.
delta0 : 99.
description : 100, 105, 106.
direct : 94, 95.
directed : 6, 7, 8, 13, 15, 23, 24, 26, 28, 35, 36, 37,

38, 40, 41, 42, 43, 46, 53, 54, 55, 56, 62, 63, 64,
65, 72, 73, 74, 76, 77, 78, 80, 81, 83, 84, 85,
87, 88, 89, 91, 94, 95, 96, 97, 98, 99, 100, 101,
103, 105, 106, 110, 111, 112, 113, 114.

disjoint subsets : 36.
done : 11, 27.
econ : 96.
empty : 7.
g: 74, 78, 81, 87, 95, 105.
Gardner, Martin: 25.
gb free : 4, 29, 46, 48, 56, 67.

gb new arc : 15, 23, 35, 40, 53, 62, 72, 76, 80, 83,
92, 97, 98, 99, 112, 114.

gb new edge : 15, 23, 35, 40, 53, 62, 72, 73, 76,
80, 83, 93, 97, 98, 99, 112, 114.

gb new graph : 13, 29, 46, 56, 65, 75, 89, 96, 106.
gb recycle : 8, 26, 37, 43, 49, 55, 64, 68, 74, 78,

81, 87, 90, 95, 105.
gb save string : 14, 34, 52, 60, 71, 75, 91, 96,

108, 114.
gb trouble code : 4, 8, 26, 29, 37, 43, 46, 49, 55,

56, 64, 68, 74, 78, 81, 87, 95, 105.
gb typed alloc : 29, 46, 49, 56, 68.
gg : 77, 78, 79, 81, 82, 84, 94, 95, 96, 97, 98, 99, 114.
Graph: 1, 8, 9, 26, 37, 43, 55, 64, 74, 78, 81, 87,

95, 101, 103, 104, 105, 114.
gunion : 1, 6, 77, 78, 111.
hash in : 31, 52, 60, 71.
hash out : 35, 53, 62, 72.
Huang, Samuel Shung: 63.
i: 9.
id : 13, 28, 38, 46, 56, 65, 100, 101, 103, 105.
ii : 47.
imap : 51.
impossible : 31, 32, 35, 39, 48, 53, 57, 62, 67.
ind : 100, 101, 102, 103, 105, 107, 108, 109.
IND_GRAPH: 102, 103, 107, 108, 110.
induced : 1, 100, 101, 102, 103, 104, 105.
intersection : 1, 77, 81.
invalid operand : 90.
j: 9.
k: 9.
l: 8, 82.
last : 31, 33, 39, 48, 50, 57, 59, 67, 70.
len : 80, 82, 84, 85, 97, 98, 99, 112, 113, 114.
length : 99.
lines : 1, 87, 88.
ltab : 67, 68, 69, 70.
m: 48, 87.
make compound id : 74, 89, 106.
make double compound id : 78, 81, 96.
map : 88, 89, 92, 93, 108, 109, 110.
mapped : 89, 93.
mark bipartite : 101.
MAX_D: 10, 12, 34, 55.
max height : 63, 64, 65, 66, 67, 68, 72.
max inv : 41, 42, 43, 45, 46, 47, 50.
MAX_NNN: 13, 66, 96.
max parts : 54, 55, 56, 57, 61.
max size : 54, 55, 56, 57.
minlen : 82, 85, 86.

52 INDEX GB BASIC §115

missing operand : 74, 78, 81, 87, 95, 105, 107.
move : 50.
mult : 82, 83, 85, 86, 108, 109, 110.
multi : 77, 78, 80, 81, 83, 84, 100, 105, 106,

110, 112, 114.
n: 8, 26, 37, 43, 55, 64, 74, 78, 81, 95, 103, 105.
name : 14, 31, 34, 40, 52, 60, 71, 75, 91, 96,

108, 114.
near panic : 87, 89, 91.
new graph : 8, 9, 13, 14, 19, 23, 26, 28, 29, 31,

37, 38, 39, 40, 43, 46, 48, 49, 55, 56, 57, 64,
65, 67, 68, 74, 75, 76, 78, 79, 81, 82, 86, 87,
88, 89, 90, 91, 92, 93, 95, 96, 97, 98, 99, 101,
103, 105, 106, 108, 109, 110.

next : 73, 76, 79, 80, 82, 83, 85, 89, 91, 93, 97,
98, 99, 110, 111, 114.

nn : 10, 11, 12, 13, 14, 19, 22, 23, 27, 29, 30,
31, 33, 35, 39, 45, 46, 47, 49, 61, 62, 65,
66, 105, 107, 108.

nnn : 13.
no more : 20, 21, 22.
no room : 13, 29, 46, 49, 56, 65, 68, 75, 89, 96, 106.
null string : 106.
nverts : 29, 46, 56, 65, 66.
n0 : 24, 25, 26, 27, 28, 36, 37, 38, 41, 42, 43, 44, 46.
n1 : 6, 8, 11, 13, 24, 25, 26, 27, 28, 36, 37, 38,

41, 42, 43, 44, 46, 101, 103.
n2 : 6, 8, 11, 13, 24, 25, 26, 27, 28, 36, 37, 38,

41, 43, 46, 101.
n3 : 6, 8, 11, 13, 24, 25, 26, 27, 28, 36, 37,

38, 41, 43, 46.
n4 : 6, 8, 11, 13, 24, 25, 26, 27, 28, 36, 37,

38, 41, 43, 46.
p: 8, 34, 35, 40, 52, 60, 62, 71, 72.
panic : 4, 8, 12, 13, 26, 29, 30, 31, 32, 35, 37,

39, 43, 45, 46, 47, 48, 49, 53, 55, 56, 57, 62,
64, 65, 66, 67, 68, 74, 75, 78, 81, 87, 89, 90,
95, 96, 105, 106, 107.

panic code : 4.
parts : 1, 54, 55, 64, 73.
perms : 1, 10, 41, 43, 55, 56, 73.
petersen : 36.
Petersen, Julius Peter Christian, graph: 36.
piece : 6, 8, 11, 13, 15, 20, 24.
pointer hacks: 75.
product : 1, 94, 95, 102.
q: 14, 52.
roget : 96.
s: 9.
save graph : 88.
self : 73, 74, 76, 100, 105, 106, 110, 112, 114.
short imap : 51, 52, 53.

sig : 10, 16, 17, 18, 31, 32, 33, 39, 57, 58, 59.
simplex : 1, 24, 25, 26, 36, 39, 43, 44, 57, 73.
siz t: 74, 75, 78, 81, 97, 99, 114.
size bits : 36, 37, 38, 40.
sprintf : 13, 14, 28, 34, 35, 38, 46, 56, 60, 62, 65,

74, 78, 81, 91, 96, 101, 103, 106, 108, 114.
ss : 40, 45, 66.
sscanf : 14, 40.
stab : 67, 68, 69.
strcpy : 13, 28, 38, 46, 56, 65.
strong : 94, 95.
subsets : 1, 36, 37, 41, 73.
subst : 102, 103, 107, 108, 110, 114.
system dependencies: 16, 40.
Tamari, Dov: 63.
test product : 96.
tip : 73, 76, 79, 82, 85, 88, 89, 91, 93, 97, 98,

99, 110, 111, 114.
tlen : 79, 80, 83, 84, 86, 109, 111, 112, 113, 114.
tmp : 76, 79, 80, 82, 83, 85, 86, 109, 111, 112, 114.
transitive : 7.
type : 94, 95, 96.
u: 35, 40, 53, 62, 72, 74, 78, 81, 87, 95, 105.
UL_BITS: 40.
unequal : 21.
util types : 13, 28, 38, 46, 56, 65, 88.
uu : 80, 97, 98, 99, 110, 112, 113, 114.
uuu : 97, 98.
v: 9.
vert offset : 75, 76, 79, 82, 85, 97, 99, 114.
Vertex: 9, 35, 40, 53, 62, 72, 74, 75, 76, 78, 79,

81, 82, 87, 89, 93, 95, 97, 99, 105, 110, 114.
vertices : 14, 19, 23, 31, 39, 40, 48, 57, 67, 75, 76,

78, 79, 81, 82, 86, 88, 89, 90, 91, 92, 93, 96, 97,
98, 99, 101, 103, 107, 108, 109, 110, 114.

very bad specs : 13, 30, 46, 47, 56, 64, 66, 96, 107.
vv : 76, 79, 80, 82, 83, 84, 85, 89, 91, 93, 95,

96, 97, 98, 99, 110, 114.
vvv : 79, 82, 114.
w: 16.
wheel : 103, 104.
working storage : 3, 4, 29, 46, 48, 49, 56, 67, 68.
wr : 10, 16, 22.
wrap : 6, 7, 8, 13, 16.
xtab : 48, 49, 50, 52, 53, 67, 68, 69, 70, 71, 72.
xx : 10, 14, 19, 20, 21, 31, 32, 33, 34, 35, 39, 40,

57, 58, 59, 60, 61, 62.
ytab : 48, 49, 50, 67, 68, 69.
yy : 10, 20, 21, 22, 23, 31, 32, 39, 57, 58.
ztab : 48, 49, 50.

GB BASIC NAMES OF THE SECTIONS 53

⟨Advance to the next nonnegative del vector, or break if done 17 ⟩ Used in section 15.

⟨Advance to the next partial solution (x0, . . . , xk), where k is as large as possible; goto last if there are no
more solutions 33 ⟩ Used in sections 31 and 39.

⟨Advance to the next partial solution (x1, . . . , xk), where k is as large as possible; goto last if there are no
more solutions 59 ⟩ Used in section 57.

⟨Advance to the next partial tree x0 . . . xk, where k is as large as possible; goto last if there are no more
solutions 70 ⟩ Used in section 67.

⟨Advance to the next perm; goto last if there are no more solutions 50 ⟩ Used in section 48.

⟨Advance to the next signed del vector, or restore del to nonnegative values and break 18 ⟩ Used in

section 15.

⟨Applications of basic subroutines 101, 103 ⟩ Used in section 2.

⟨Assign a Polish prefix code name to vertex v 71 ⟩ Used in section 67.

⟨Assign a symbolic name for (x0, . . . , xd) to vertex v 34 ⟩ Used in sections 31 and 39.

⟨Assign a symbolic name for (x1, . . . , xn) to vertex v 52 ⟩ Used in section 48.

⟨Assign names to the new vertices, and create a map from g to new graph 108 ⟩ Used in section 106.

⟨Assign the name x1 + · · ·+ xd to vertex v 60 ⟩ Used in section 57.

⟨Basic subroutines 8, 26, 37, 43, 55, 64, 74, 78, 81, 87, 95, 105 ⟩ Used in section 2.

⟨Clear out the temporary utility fields 86 ⟩ Used in section 82.

⟨Complete the partial solution (x0, . . . , xk) 32 ⟩ Used in sections 31 and 39.

⟨Complete the partial solution (x1, . . . , xk) 58 ⟩ Used in section 57.

⟨Complete the partial tree x0 . . . xk 69 ⟩ Used in section 67.

⟨Compute component sizes periodically for d dimensions 12 ⟩ Used in sections 11 and 27.

⟨Compute nverts using the R series 66 ⟩ Used in section 65.

⟨Correct for wraparound, or goto no more if off the board 22 ⟩ Used in section 20.

⟨Create a graph with one vertex for each binary tree 65 ⟩ Used in section 64.

⟨Create a graph with one vertex for each partition 56 ⟩ Used in section 55.

⟨Create a graph with one vertex for each permutation 46 ⟩ Used in section 43.

⟨Create a graph with one vertex for each point 28 ⟩ Used in section 26.

⟨Create a graph with one vertex for each subset 38 ⟩ Used in section 37.

⟨Create arcs or edges from previous permutations to v 53 ⟩ Used in section 48.

⟨Create arcs or edges from previous points to v 35 ⟩ Used in section 31.

⟨Create arcs or edges from previous subsets to v 40 ⟩ Used in section 39.

⟨Create arcs or edges from v to previous partitions 61 ⟩ Used in section 57.

⟨Create arcs or edges from v to previous trees 72 ⟩ Used in section 67.

⟨Determine the number of feasible (x0, . . . , xd), and allocate the graph 29 ⟩ Used in sections 28 and 38.

⟨Determine n and the maximum possible number of inversions 45 ⟩ Used in section 44.

⟨Determine n and nn 107 ⟩ Used in section 106.

⟨Generate a new arc or edge for the intersection, and reduce the multiplicity 83 ⟩ Used in section 82.

⟨Generate a subpartition (n1, . . . , nd+1) by splitting xj into a + b, and make that subpartition adjacent
to v 62 ⟩ Used in section 61.

⟨Generate moves for the current del vector 19 ⟩ Used in section 15.

⟨Generate moves from v corresponding to del 20 ⟩ Used in section 19.

⟨Give names to the vertices 14 ⟩ Used in section 13.

⟨Go to no more if yy = xx 21 ⟩ Used in section 20.

⟨ Initialize the wr , sig , and del tables 16 ⟩ Used in section 15.

⟨ Initialize xtab , ytab , and ztab 49 ⟩ Used in section 48.

⟨ Initialize xtab , ytab , ltab , and stab ; also set d = 2n 68 ⟩ Used in section 67.

⟨ Insert a union arc or edge from vv to u, if appropriate 80 ⟩ Used in section 79.

⟨ Insert arcs of a directed line graph 92 ⟩ Used in section 87.

⟨ Insert arcs or edges for all legal moves 15 ⟩ Used in section 8.

⟨ Insert arcs or edges for cartesian product 97 ⟩ Used in section 95.

⟨ Insert arcs or edges for direct product 99 ⟩ Used in section 95.

54 NAMES OF THE SECTIONS GB BASIC

⟨ Insert arcs or edges for first component of cartesian product 98 ⟩ Used in section 97.

⟨ Insert arcs or edges for induced vertices 110 ⟩ Used in section 105.

⟨ Insert arcs or edges from vertex u to vertices uu through uu + j − 1 112 ⟩ Used in section 110.

⟨ Insert arcs or edges present in both g and gg 82 ⟩ Used in section 81.

⟨ Insert arcs or edges present in either g or gg 79 ⟩ Used in section 78.

⟨ Insert complementary arcs or edges 76 ⟩ Used in section 74.

⟨ Insert edges of an undirected line graph 93 ⟩ Used in section 87.

⟨Make names and arcs for a substituted graph 114 ⟩ Used in section 108.

⟨Make u a vertex representing the arc a from v to vv 91 ⟩ Used in section 89.

⟨Multiply the power series coefficients by 1 + z + · · ·+ znj 30 ⟩ Used in section 29.

⟨Multiply the power series coefficients by
∏

1≤k≤nj
(1− zs+k)/(1− zk) 47 ⟩ Used in section 46.

⟨Name the partitions and create the arcs or edges 57 ⟩ Used in section 55.

⟨Name the permutations and create the arcs or edges 48 ⟩ Used in section 43.

⟨Name the points and create the arcs or edges 31 ⟩ Used in section 26.

⟨Name the subsets and create the arcs or edges 39 ⟩ Used in section 37.

⟨Name the trees and create the arcs or edges 67 ⟩ Used in section 64.

⟨Normalize the board-size parameters 11 ⟩ Used in section 8.

⟨Normalize the permutation parameters 44 ⟩ Used in section 43.

⟨Normalize the simplex parameters 27 ⟩ Used in sections 26, 37, and 44.

⟨Private variables 3, 5, 10, 51 ⟩ Used in section 2.

⟨Record a legal move from xx to yy 23 ⟩ Used in section 20.

⟨Recover from potential disaster due to bad data 90 ⟩ Used in section 87.

⟨Restore g to its original state 109 ⟩ Used in section 105.

⟨Restore g to its pristine original condition 88 ⟩ Used in sections 87 and 90.

⟨Set up a graph whose vertices are the lines of g 89 ⟩ Used in section 87.

⟨Set up a graph with ordered pairs of vertices 96 ⟩ Used in section 95.

⟨Set up a graph with the induced vertices 106 ⟩ Used in section 105.

⟨Set up a graph with the vertices of g 75 ⟩ Used in sections 74, 78, and 81.

⟨Set up a graph with n vertices 13 ⟩ Used in section 8.

⟨Take note of all arcs from v 85 ⟩ Used in section 82.

⟨Take note of existing edges that touch u 111 ⟩ Used in section 110.

⟨Update minimum of multiple maxima 84 ⟩ Used in section 82.

⟨Update the minimum arc length from u to uu , then continue 113 ⟩ Used in sections 112 and 114.

⟨Vanilla local variables 9 ⟩ Used in sections 8, 26, 37, 43, 55, 64, 74, 78, 81, 87, 95, and 105.

⟨ gb_basic.h 1, 7, 36, 41, 54, 63, 94, 100, 102, 104 ⟩

May 19, 2018 at 02:29

GB BASIC
Section Page

Introduction . 1 1
Grids and game boards . 6 2
Generalized triangular boards . 24 9
Subset graphs . 36 14
Permutation graphs . 41 17
Partition graphs . 54 22
Binary tree graphs . 63 26
Complementing and copying . 73 32
Graph union and intersection . 77 34
Line graphs . 87 38
Graph products . 94 41
Induced graphs . 100 44
Index . 115 51

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

