81 SAT-SYNTH-DATA INTRO 1

1. Intro. This program generates data for a given function, in the form needed by the SAT-SYNTH
program.

I hacked it in a big hurry, for one particular case. With a little more work I can of course parameterize it
so that it will generate a reasonably wide class of examples from user-friendly input specs.

At the moment I have only one parameter, ¢t: Each new data point is chosen so that each of its coordinates
differs from the previous point with probability 27¢. For example, if t = 3 and if I've just output z and f(z),
I will next output = @y and f(z @ y), where every bit of y is 1 with probability 1/8 and 0 with probability
7/8. On the other hand if ¢t = 1, every data point is random.

(Well, there’s also a second parameter, namely a random seed.)

The function f here is assumed to be

f(x1, ..., @20) = ToZ3T10 V TT10T12 V T8T13T15 V TeT10T12,

because I'm featuring that particular function in my book. Other functions could easily be generated,
however, by changing M and the term table below.

I generate lots of data points (currently 1000). The program SAT-SYNTH-TRUNC will use only an initial
segment of them.

#define M 4 /* this many terms */
#define N 20 /* this many variables */

F#define tmax 5 /* maximum number of literals per term */
#define imaz 1000 /* this many data points are generated */
#define O "i" /* used for percent signs in format strings */

#include <stdio.h>
#include <stdlib.h>
#include "gb_flip.h"
int term[M][tmaz + 1] = {{-2,-3,-10,0}, {—6,—10,—-12,0}, {8,—13,—15,0},{—8,10,—12,0} };
int seed; /* the random number seed */
int ¢; /* the number of times to AND bits together before use x/
char z[N + 1]; /* the current data point x/
unsigned int randbits; /* yet-unused random bits, preceded by 1 x/

main (int argc, char xargv|])
{
register int a, b, 7, j, k;
(Process the command line 2);
(Set up the first data point 3);
for (i =0; i < imazx; i++) {
(Output the current x and f(z) 4);
(Set up the next data point 5)

}
}

b

2. (Process the command line 2) =
if (arge # 3V sscanf (argu[1], ""O"d", &t) # 1V sscanf (argv[2], ""O"d", &seed) # 1) {
forintf (stderr, "Usage:,"O"sy tuseed\n", argu[0]);
exit(—1);
}

This code is used in section 1.

2 INTRO SAT-SYNTH-DATA

3. (Set up the first data point 3) =
gb_init_rand (seed);
for (j=1; j <N; j++) z[j] = gb_next_-rand() & 1;
randbits = 1;

This code is used in section 1.

4. (Output the current z and f(z) 4) =
for (j =1; j < N; j++) printf (""O"d", z[j]);
for (a=0,j=0; j <M; j+) {
fo|r (Z =1,k =0; term[j][k]; k++) b &= (term[j][k] > 0 ? x[term[j][k]] : 1 — z[—term[j][K]]);
al=1b;

pringf (":"O"d\n", a);

This code is used in section 1.

5. (Set up the next data point 5) =
for (k=0; k=0;) {
for (j=1; j <N; j++) {
if (randbits = 1) {
randbits = gb_next_rand(); /* get 31 new random bits */
for (k=1; k <t; k++) randbits &= gb_next_rand();
randbits |= #80000000; /+ prepend a 1 bit x/
}
k |= randbits & 1; /* set k nonzero if there was a change x/
x[j] &= randbits & 1;
randbits >=1;
}
}

This code is used in section 1.

§3

86 SAT-SYNTH-DATA INDEX 3

6. Index.

a: 1.
arge: 1, 2.

argv: 1, 2.

b: 1.

erit: 2.

forintf: 2.
gb_init_rand: 3.
gb_next_rand: 3, 5.
i 1.

immazx: 1.

7o 1.

k: 1.

M: 1
main: 1.
N:
O: 1
printf: 4.
randbits: 1, 3, 5.
seed: 1, 2, 3.
sscanf: 2.
stderr: 2.

t. 1.

term: 1, 4.
tmazx: 1.

x: 1.

—_

1.
1.

4 NAMES OF THE SECTIONS SAT-SYNTH-DATA

{Output the current = and f(x) 4) Used in section 1.
(Process the command line 2) Used in section 1.
(Set up the first data point 3) Used in section 1.
(Set up the next data point 5) Used in section 1.

SAT-SYNTH-DATA

Section Page

