
§1 GIRTH INTRODUCTION 1

Important: Before reading GIRTH, please read or at least skim the program for GB RAMAN.

1. Introduction. This demonstration program uses graphs constructed by the raman procedure in the
GB RAMAN module to produce an interactive program called girth, which computes the girth and diameter
of a class of Ramanujan graphs.
The girth of a graph is the length of its shortest cycle; the diameter is the maximum length of a shortest

path between two vertices. A Ramanujan graph is a connected, undirected graph in which every vertex has
degree p+1, with the property that every eigenvalue of its adjacency matrix is either ±(p+1) or has absolute
value ≤ 2

√
p.

Exact values for the girth are of interest because the bipartite graphs produced by raman apparently have
larger girth than any other known family of regular graphs, even if we consider graphs whose existence is
known only by nonconstructive methods, except for the cubic “sextet” graphs of Biggs, Hoare, and Weiss
[Combinatorica 3 (1983), 153–165; 4 (1984), 241–245].
Exact values for the diameter are of interest because the diameter of any Ramanujan graph is at most

twice the minimum possible diameter of any regular graph.
The program will prompt you for two numbers, p and q. These should be distinct prime numbers, not too

large, with q > 2. A graph is constructed in which each vertex has degree p+ 1. The number of vertices is
(q3 − q)/2 if p is a quadratic residue modulo q, or q3 − q if p is not a quadratic residue. In the latter case,
the graph is bipartite and it is known to have rather large girth.
If p = 2, the value of q is further restricted to be of the form 104k+(1, 3, 9, 17, 25, 27, 35, 43, 49, 51, 75, 81).

This means that the only feasible values of q to go with p = 2 are probably 3, 17, and 43; the next
case, q = 107, would generate a bipartite graph with 1,224,936 vertices and 3,674,808 arcs, thus requiring
approximately 113 megabytes of memory (not to mention a nontrivial amount of computer time). If you
want to compute the girth and diameter of Ramanujan graphs for large p and/or q, much better methods
are available based on number theory; the present program is merely a demonstration of how to interface
with the output of raman . Incidentally, the graph for p = 2 and q = 43 turns out to have 79464 vertices,
girth 20, and diameter 22.
The program will examine the graph and compute its girth and its diameter, then will prompt you for

another choice of p and q.

2 INTRODUCTION GIRTH §2

2. Here is the general layout of this program, as seen by the C compiler:

#include "gb_graph.h" /∗ the standard GraphBase data structures ∗/
#include "gb_raman.h" /∗ Ramanujan graph generator ∗/
⟨Preprocessor definitions ⟩
⟨Global variables 3 ⟩
main ()
{
printf ("This␣program␣explores␣the␣girth␣and␣diameter␣of␣Ramanujan␣graphs.\n");
printf ("The␣bipartite␣graphs␣have␣q^3−q␣vertices,␣and␣the␣non−bipartite\n");
printf ("graphs␣have␣half␣that␣number.␣Each␣vertex␣has␣degree␣p+1.\n");
printf ("Both␣p␣and␣q␣should␣be␣odd␣prime␣numbers;\n");
printf ("␣␣or␣you␣can␣try␣p␣=␣2␣with␣q␣=␣17␣or␣43.\n");
while (1) {
⟨Prompt the user for p and q; break if unsuccessful 4 ⟩;
g = raman (p, q, 0L, 0L);
if (g ≡ Λ) ⟨Explain that the graph could not be constructed 5 ⟩
else {
⟨Print the theoretical bounds on girth and diameter of g 10 ⟩;
⟨Compute and print the true girth and diameter of g 12 ⟩;
gb recycle (g);

}
}
return 0; /∗ normal exit ∗/

}

3. ⟨Global variables 3 ⟩ ≡
Graph ∗g; /∗ the current Ramanujan graph ∗/
long p; /∗ the branching factor (degree minus one) ∗/
long q; /∗ cube root of the graph size ∗/
char buffer [16]; /∗ place to collect what the user types ∗/

See also section 11.

This code is used in section 2.

4. #define prompt (s)
{ printf (s); fflush (stdout); /∗ make sure the user sees the prompt ∗/
if (fgets (buffer , 15, stdin) ≡ Λ) break; }

⟨Prompt the user for p and q; break if unsuccessful 4 ⟩ ≡
prompt ("\nChoose␣a␣branching␣factor,␣p:␣");
if (sscanf (buffer , "%ld",&p) ̸= 1) break;
prompt ("OK,␣now␣choose␣the␣cube␣root␣of␣graph␣size,␣q:␣");
if (sscanf (buffer , "%ld",&q) ̸= 1) break;

This code is used in section 2.

§5 GIRTH INTRODUCTION 3

5. ⟨Explain that the graph could not be constructed 5 ⟩ ≡
printf ("␣Sorry,␣I␣couldn’t␣make␣that␣graph␣(%s).\n",

panic code ≡ very bad specs ? "q␣is␣out␣of␣range" :
panic code ≡ very bad specs + 1 ? "p␣is␣out␣of␣range" :
panic code ≡ bad specs + 5 ? "q␣is␣too␣big" :
panic code ≡ bad specs + 6 ? "p␣is␣too␣big" :
panic code ≡ bad specs + 1 ? "q␣isn’t␣prime" :
panic code ≡ bad specs + 7 ? "p␣isn’t␣prime" :
panic code ≡ bad specs + 3 ? "p␣is␣a␣multiple␣of␣q" :
panic code ≡ bad specs + 2 ? "q␣isn’t␣compatible␣with␣p=2" :
"not␣enough␣memory");

This code is used in section 2.

4 BOUNDS GIRTH §6

6. Bounds. The theory of Ramanujan graphs allows us to predict the girth and diameter to within a
factor of 2 or so.
In the first place, we can easily derive an upper bound on the girth and a lower bound on the diameter,

valid for any n-vertex regular graph of degree p+1. Such a graph has at most (p+1)pk−1 points at distance k
from any given vertex; this implies a lower bound on the diameter d:

1 + (p+ 1) + (p+ 1)p+ (p+ 1)p2 + · · ·+ (p+ 1)pd−1 ≥ n.

Similarly, if the girth g is odd, say g = 2k + 1, the points at distance ≤ k from any vertex must be distinct,
so we have

1 + (p+ 1) + (p+ 1)p+ (p+ 1)p2 + · · ·+ (p+ 1)pk−1 ≤ n;

and if g = 2k + 2, at least pk further points must exist at distance k + 1, because the (p + 1)pk paths of
length k + 1 can end at a particular vertex at most p+ 1 times. Thus

1 + (p+ 1) + (p+ 1)p+ (p+ 1)p2 + · · ·+ (p+ 1)pk−1 + pk ≤ n

when the girth is even.
In the following code we let pp = pdl and s = 1 + (p+ 1) + · · ·+ (p+ 1)pdl.

⟨Compute the “trivial” bounds gu and dl on girth and diameter 6 ⟩ ≡
s = p+ 2; dl = 1; pp = p; gu = 3;
while (s < n) {
s += pp ;
if (s ≤ n) gu++;
dl ++;
pp ∗= p;
s += pp ;
if (s ≤ n) gu++;

}
This code is used in section 10.

§7 GIRTH BOUNDS 5

7. When p > 2, we can use the theory of integral quaternions to derive a lower bound on the girth of the
graphs produced by raman . A path of length g from a vertex to itself exists if and only if there is an integral
quaternion α = a0 + a1i+ a2j+ a3k of norm pg such that the a’s are not all multiples of p, while a1, a2, and
a3 are multiples of q and a0 ̸≡ a1 ≡ a2 ≡ a3 (mod 2). This means we have integers (a0, a1, a2, a3) with

a20 + a21 + a22 + a23 = p g,

satisfying the stated properties mod q and mod 2. If a1, a2, and a3 are even, they cannot all be zero so we
must have p g ≥ 1 + 4q2; if they are odd, we must have p g ≥ 4 + 3q2. (The latter is possible only when g is
odd and p mod 4 = 3.) Since n is roughly proportional to q3, this means g must be at least about 2

3 logp n.
Thus g isn’t too much less than the maximum girth possible in any regular graph, which we have shown is
at most about 2 logp n.

When the graph is bipartite we can, in fact, prove that g is approximately 4
3 logp n. The bipartite case

occurs if and only if p is not a quadratic residue modulo q; hence the number g in the previous paragraph must
be even, say g = 2r. Then p g mod 4 = 1, and a0 must be odd. The congruence a20 ≡ p2r (mod q2) implies that
a0 ≡ ±pr, because all numbers relatively prime to q2 are powers of a primitive root. We can assume without
loss of generality that a0 = pr−2mq2, where 0 < m < pr/q2; it follows in particular that pr > q2. Conversely,
if pr−q2 can be written as a sum of three squares b21+b22+b23, then p2r = (pr−2q2)2+(2b1q)

2+(2b2q)
2+(2b3q)

2

is a representation of the required type. If pr − q2 is a positive integer that cannot be represented as a sum
of three squares, a well-known theorem of Legendre tells us that pr − q2 = 4ts, where s ≡ 7 (mod 8). Since p
and q are odd, we have t ≥ 1; hence pr − 2q2 is odd. If pr − 2q2 is a positive odd integer, Legendre’s theorem
tells us that we can write 2pr − 4q2 = b21 + b22 + b23; hence p2r = (pr − 4q2)2 + (2b1q)

2 + (2b2q)
2 + (2b3q)

2.
We conclude that the girth is either 2⌈logp q2⌉ or 2⌈logp 2q2⌉. (This explicit calculation, which makes our
program for calculating the girth unnecessary or at best redundant in the bipartite case, is due to G. A.
Margulis and, independently, to Biggs and Boshier [Journal of Combinatorial Theory B49 (1990), 190–194].)

A girth of 1 or 2 can occur, since these graphs might have self-loops or multiple edges if p is sufficiently
large.

⟨Compute a lower bound gl on the girth 7 ⟩ ≡
if (bipartite) { long b = q ∗ q;
for (gl = 1, pp = p; pp ≤ b; gl ++, pp ∗= p) ; /∗ iterate until p g > q2 ∗/
gl += gl ;

} else { long b1 = 1 + 4 ∗ q ∗ q, b2 = 4 + 3 ∗ q ∗ q; /∗ bounds on p g ∗/
for (gl = 1, pp = p; pp < b1 ; gl ++, pp ∗= p) {

if (pp ≥ b2 ∧ (gl & 1) ∧ (p& 2)) break;
}

}
This code is used in section 10.

8. Upper bounds on the diameter of any Ramanujan graph can be derived as shown in the paper by
Lubotzky, Phillips, and Sarnak in Combinatorica 8 (1988), page 275. (However, a slight correction to their
proof is necessary—their parameter l should be odd when x and y lie in different parts of a bipartite graph.)
Their argument demonstrates that p(d−1)/2 < 2n in the nonbipartite case and p(d−2)/2 < n in the bipartite
case; therefore we obtain the upper bound d ≤ 2 logp n + O(1), which is about twice the lower bound that
holds in an arbitrary regular graph.

⟨Compute an upper bound du on the diameter 8 ⟩ ≡
{ long nn = (bipartite ? n : 2 ∗ n);
for (du = 0, pp = 1; pp < nn ; du += 2, pp ∗= p) ;
⟨Decrease du by 1, if pp/nn ≥ √

p 9 ⟩;
if (bipartite) du++;

}
This code is used in section 10.

6 BOUNDS GIRTH §9

9. Floating point arithmetic might not be accurate enough for the test required in this section. We avoid
it by using an all-integer method analogous to Euclid’s algorithm, based on the continued fraction for

√
p

[Seminumerical Algorithms, exercise 4.5.3–12]. In the loop here we want to compare nn/pp to (
√
p+ a)/b,

where
√
p+ a > b > 0 and p− a2 is a multiple of b.

⟨Decrease du by 1, if pp/nn ≥ √
p 9 ⟩ ≡

{ long qq = pp/nn ;

if (qq ∗ qq > p) du−−;
else if ((qq + 1) ∗ (qq + 1) > p) { /∗ qq = ⌊√p ⌋ ∗/

long aa = qq , bb = p− aa ∗ aa , parity = 0;

pp −= qq ∗ nn ;
while (1) {
long x = (aa + qq)/bb , y = nn − x ∗ pp ;
if (y ≤ 0) break;
aa = bb ∗ x− aa ; /∗ now 0 < aa <

√
p ∗/

bb = (p− aa ∗ aa)/bb ;
nn = pp ; pp = y;
parity ⊕= 1;

}
if (¬parity) du−−;

}
}

This code is used in section 8.

10. ⟨Print the theoretical bounds on girth and diameter of g 10 ⟩ ≡
n = g⃗ n;
if (n ≡ (q + 1) ∗ q ∗ (q − 1)) bipartite = 1;
else bipartite = 0;
printf ("The␣graph␣has␣%ld␣vertices,␣each␣of␣degree␣%ld,␣and␣it␣is␣%sbipartite.\n", n, p+ 1,

bipartite ? "" : "not␣");
⟨Compute the “trivial” bounds gu and dl on girth and diameter 6 ⟩;
printf ("Any␣such␣graph␣must␣have␣diameter␣>=␣%ld␣and␣girth␣<=␣%ld;\n", dl , gu);
⟨Compute an upper bound du on the diameter 8 ⟩;
printf ("theoretical␣considerations␣tell␣us␣that␣this␣one’s␣diameter␣is␣<=␣%ld", du);
if (p ≡ 2) printf (".\n");
else {
⟨Compute a lower bound gl on the girth 7 ⟩;
printf (",\nand␣its␣girth␣is␣>=␣%ld.\n", gl);

}
This code is used in section 2.

11. We had better declare all the variables we’ve been using so freely.

⟨Global variables 3 ⟩ +≡
long gl , gu , dl , du ; /∗ theoretical bounds ∗/
long pp ; /∗ power of p ∗/
long s; /∗ accumulated sum ∗/
long n; /∗ number of vertices ∗/
char bipartite ; /∗ is the graph bipartite? ∗/

§12 GIRTH BREADTH-FIRST SEARCH 7

12. Breadth-first search. The graphs produced by raman are symmetrical, in the sense that there is
an automorphism taking any vertex into any other. Each vertex V and each edge P corresponds to a 2× 2
matrix, and the path P1P2 . . . Pk leading from vertex V to vertex V P1P2 . . . Pk has the same properties as
the path leading from vertex U to vertex UP1P2 . . . Pk. Therefore we can find the girth and the diameter by
starting at any vertex v0.
We compute the number of points at distance k from v0 for all k, by explicitly forming a linked list of all

such points. Utility field link is used for the links. The lists terminate with a non-null sentinel value, so
that we can also use the condition link ≡ Λ to tell if a vertex has been encountered before. Another utility
field, dist , contains the distance from the starting point, and back points to a vertex one step closer.

#define link w.V /∗ the field where we store links, initially Λ ∗/
#define dist v.I /∗ the field where we store distances, initially 0 ∗/
#define back u.V /∗ the field where we store backpointers, initially Λ ∗/
⟨Compute and print the true girth and diameter of g 12 ⟩ ≡
printf ("Starting␣at␣any␣given␣vertex,␣there␣are\n");
{ long k; /∗ current distance being generated ∗/
long c; /∗ how many we’ve seen so far at this distance ∗/
register Vertex ∗v; /∗ current vertex in list at distance k − 1 ∗/
register Vertex ∗u; /∗ head of list for distance k ∗/
Vertex ∗sentinel = g⃗ vertices + n; /∗ nonzero link at end of lists ∗/
long girth = 999; /∗ length of smallest cycle found, initially infinite ∗/
k = 0;
u = g⃗ vertices ;
u⃗ link = sentinel ;
c = 1;
while (c) {
for (v = u, u = sentinel , c = 0, k++; v ̸= sentinel ; v = v⃗ link) ⟨Place all vertices adjacent to v onto

list u, unless they’ve been encountered before, increasing c whenever the list grows 13 ⟩;
printf ("%8ld␣vertices␣at␣distance␣%ld%s\n", c, k, c > 0 ? "," : ".");

}
printf ("So␣the␣diameter␣is␣%ld,␣and␣the␣girth␣is␣%ld.\n", k − 1, girth);

}
This code is used in section 2.

13. ⟨Place all vertices adjacent to v onto list u, unless they’ve been encountered before, increasing c
whenever the list grows 13 ⟩ ≡

{ register Arc ∗a;
for (a = v⃗ arcs ; a; a = a⃗ next) { register Vertex ∗w; /∗ vertex adjacent to v ∗/
w = a⃗ tip ;
if (w⃗ link ≡ Λ) {
w⃗ link = u;
w⃗ dist = k;
w⃗ back = v;
u = w;
c++;

} else if (w⃗ dist + k < girth ∧ w ̸= v⃗ back) girth = w⃗ dist + k;
}

}
This code is used in section 12.

8 INDEX GIRTH §14

14. Index. Finally, here’s a list that shows where the identifiers of this program are defined and used.

a: 13.
aa : 9.
Arc: 13.
arcs : 13.
b: 7.
back : 12, 13.
bad specs : 5.
bb : 9.
Biggs, Norman L.: 1, 7.
bipartite : 7, 8, 10, 11.
Boshier, A. G.: 7.
buffer : 3, 4.
b1 : 7.
b2 : 7.
c: 12.
dist : 12, 13.
dl : 6, 10, 11.
du : 8, 9, 10, 11.
fflush : 4.
fgets : 4.
g: 3.
gb recycle : 2.
girth : 12, 13.
gl : 7, 10, 11.
Graph: 3.
gu : 6, 10, 11.
Hoare, M. J.: 1.
k: 12.
link : 12, 13.
Lubotzky, Alexander: 8.
main : 2.
Margulis, Grigorĭı Aleksandrovich: 7.
n: 11.
next : 13.
nn : 8, 9.
p: 3.
panic code : 5.
parity : 9.
Phillips, Ralph Saul: 8.
pp : 6, 7, 8, 9, 11.
printf : 2, 4, 5, 10, 12.
prompt : 4.
q: 3.
qq : 9.
raman : 1, 2, 7, 12.
Ramanujan graphs: 1.
s: 11.
Sarnak, Peter: 8.
sentinel : 12.
sscanf : 4.
stdin : 4.

stdout : 4.
tip : 13.
u: 12.
v: 12.
Vertex: 12, 13.
vertices : 12.
very bad specs : 5.
w: 13.
Weiss, Alfred: 1.
x: 9.
y: 9.

GIRTH NAMES OF THE SECTIONS 9

⟨Compute a lower bound gl on the girth 7 ⟩ Used in section 10.

⟨Compute an upper bound du on the diameter 8 ⟩ Used in section 10.

⟨Compute and print the true girth and diameter of g 12 ⟩ Used in section 2.

⟨Compute the “trivial” bounds gu and dl on girth and diameter 6 ⟩ Used in section 10.

⟨Decrease du by 1, if pp/nn ≥ √
p 9 ⟩ Used in section 8.

⟨Explain that the graph could not be constructed 5 ⟩ Used in section 2.

⟨Global variables 3, 11 ⟩ Used in section 2.

⟨Place all vertices adjacent to v onto list u, unless they’ve been encountered before, increasing c whenever
the list grows 13 ⟩ Used in section 12.

⟨Print the theoretical bounds on girth and diameter of g 10 ⟩ Used in section 2.

⟨Prompt the user for p and q; break if unsuccessful 4 ⟩ Used in section 2.

May 19, 2018 at 02:30

GIRTH
Section Page

Introduction . 1 1
Bounds . 6 4
Breadth-first search . 12 7
Index . 14 8

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

