
§1 GATES-TO-WIRES INTRO 1

May 19, 2018 at 02:30

1. Intro. This program reads in a gate graph (in the standard Stanford GraphBase format as defined
in GB GATES) and converts it a similar graph in which every vertex corresponds to a “wire” in a physical
network for the original circuit. Informally, the wires correspond to the parts of a circuit that can be “stuck”
or not. The main difference is that each wire is the input to at most one subsequent gate, except for “fanout
branch” wires; the latter are inputs to exactly two subsequent vertices called “clones.”
A clone vertex v has v⃗ typ = ’F’. (F stands for fanout; the letter C was already taken, to stand for a

constant gate.) It has one outgoing arc, which points to its parent. The two clones with the same parent are
consecutive. All clones descended from a normal gate appear immediately following that gate. (Thus the n
inputs to the circuit, which formerly were the first n gates, are now interspersed with their clones.)
Every wire has a “top” and a “bottom.” The top is either external (namely one of the n inputs), or the

output of a previous ordinary gate, or the implicit junction for two clones. The bottom is either external
(namely one of the m outputs), or an input to a subsequent ordinary gate, or an input to an implicit junction.
Thus the number of vertices is n, plus the number A of ordinary gates, plus 2B for the clones, where B

is the number of implicit junctions. This counts the wires by the number of tops of wires.
We can also count them by the number of bottoms. Then we conclude that the number of vertices is

m, plus 2A for the inputs to ordinary gates (if we assume that they all have exactly two inputs), plus B.
Equating these two counts gives m+A = n+B, although the relationship will be different if ordinary gates
aren’t all binary. (The general formula is m + ΣA − A = n + B, where ΣA is the sum of in-degrees of all
ordinary gates. Notice that A + n = g⃗ n and ΣA = g⃗ m in terms of the input graph; hence we’re adding
2B = 2(m+ g⃗ m− g⃗ n) clone vertices to that graph.)
No two outputs can share the same wire, nor can a wire be associated with more than one input port to

a gate or a junction.
This program also converts a sequential circuit to a combinational circuit, by changing all latches (v⃗ typ =

’L’) to inputs (v⃗ typ = ’I’) , ∧adding themtothe list of outputs .Namesof the input∧outputfilesmust begivenonthecommand
line . include ”gbgraph.h”include”gbgates.h”include”gbsave.h”FILE∗inf ile, ∗outf ile; charbuf [1000];main(intargc, char∗
argv[])registerinti, j, k, n, r, s; registerV ertex ∗ u, ∗v, ∗w; registerArc ∗ a, ∗b, ∗aa; registerGraph ∗ g, ∗gg;
⟨Process the command line 2 ⟩ +≡
;
⟨Compute out-degrees and prepend all latches to the list of outputs 3 ⟩;
⟨Create the new graph, gg 4 ⟩;
strcpy (gg⃗util types , g⃗ util types);
s = save graph (gg , argv [2]);
if (s) fprintf (stderr , "Output␣written␣to␣%s␣(anomalies␣%x!)\n", argv [2], s);
else fprintf (stderr , "Output␣written␣to␣%s\n", argv [2]);
}

2. ⟨Process the command line 2 ⟩ ≡
if (argc ̸= 3) {
fprintf (stderr , "Usage:␣%s␣gates−in.gb␣wires−out.gb\n", argv [0]);
exit (−1);

}
g = restore graph (argv [1]);
if (¬g) {
fprintf (stderr , "I␣can’t␣restore␣the␣graph␣‘%s’!\n", argv [1]);
exit (−2);

}
This code is used in section 1.

2 INTRO GATES-TO-WIRES §3

3. #define deg u.I /∗ utility field of a vertex ∗/
⟨Compute out-degrees and prepend all latches to the list of outputs 3 ⟩ ≡
for (k = 0, v = g⃗ vertices ; v < g⃗ vertices + g⃗ n; v++) {
v⃗ deg = 0;
if (v⃗ typ ≡ ’L’) {

v⃗ typ = ’I’;
a = gb virgin arc();
a⃗ next = g⃗ outs ;
a⃗ tip = v⃗ alt ;
g⃗ outs = a;

}
else if (v⃗ typ ̸= ’I’) {

for (a = v⃗ arcs ; a; a = a⃗ next) k++, a⃗ tip⃗ deg ++;
}

}
for (a = g⃗ outs ; a; a = a⃗ next) k++, a⃗ tip⃗ deg ++;

This code is used in section 1.

4. ⟨Create the new graph, gg 4 ⟩ ≡
gg = gb new graph (2 ∗ k − g⃗ n);
if (¬gg) {
fprintf (stderr , "I␣couldn’t␣create␣a␣new␣graph!\n");
exit (−99);

}
make compound id (gg , "", g, "|wires");
for (u = g⃗ vertices , v = gg⃗vertices ; u < g⃗ vertices + g⃗ n; u++) {
v⃗ name = gb save string (u⃗ name);
v⃗ typ = u⃗ typ ;
u⃗ alt = v;
for (a = u⃗ arcs ; a; a = a⃗ next) {
w = a⃗ tip⃗ alt ;
a⃗ tip⃗ alt ++;
gb new arc(v, w, a⃗ len);

}
k = (u⃗ deg)− 1, v++;
for (j = 0; j < k; j++) {
sprintf (buf , "%s#%d", u⃗ name , 2 ∗ j + 1);
v⃗ name = gb save string (buf);
v⃗ typ = ’F’;
gb new arc(v, u⃗ alt , 0);
v++;
sprintf (buf , "%s#%d", u⃗ name , 2 ∗ j + 2);
v⃗ name = gb save string (buf);
v⃗ typ = ’F’;
gb new arc(v, u⃗ alt , 0);
v++;
u⃗ alt ++;

}
}
⟨Create gg⃗outs 5 ⟩;

This code is used in section 1.

§5 GATES-TO-WIRES INTRO 3

5. First we reverse (and destroy) the output list of g. Then we translate it into the corresponding vertices
of gg , reversing it again in the process.

⟨Create gg⃗outs 5 ⟩ ≡
for (b = Λ, a = g⃗ outs ; a; a = aa) {
aa = a⃗ next ;
a⃗ next = b;
b = a;

}
for (; b; b = b⃗ next) {
a = gb virgin arc();
w = b⃗ tip ;
a⃗ tip = w⃗ alt ;
w⃗ alt ++;
a⃗ next = gg⃗outs ;
gg⃗outs = a;

}
This code is used in section 4.

4 INDEX GATES-TO-WIRES §6

6. Index.

aa : 1, 5.
adding : 1.
alt : 3, 4, 5.
Arc: 1.
arcs : 3, 4.
argc : 1, 2.
argv : 1, 2.
be : 1.
buf : 1, 4.
command : 1.
deg : 3, 4.
exit : 2, 4.
files : 1.
fprintf : 1, 2, 4.
gb new arc : 4.
gb new graph : 4.
gb save string : 4.
gb virgin arc : 3, 5.
gg : 1, 4, 5.
given : 1.
Graph: 1.
in file : 1.
input : 1.
len : 4.
list : 1.
main : 1.
make compound id : 4.
must : 1.
name : 4.
Names : 1.
next : 3, 4, 5.
of : 1.
on : 1.
out file : 1.
output : 1.
outputs : 1.
outs : 3, 5.
restore graph : 2.
save graph : 1.
sprintf : 4.
stderr : 1, 2, 4.
strcpy : 1.
the : 1.
them : 1.
tip : 3, 4, 5.
to : 1.
typ : 1, 3, 4.
util types : 1.
Vertex: 1.
vertices : 3, 4.

GATES-TO-WIRES NAMES OF THE SECTIONS 5

⟨Compute out-degrees and prepend all latches to the list of outputs 3 ⟩ Used in section 1.

⟨Create the new graph, gg 4 ⟩ Used in section 1.

⟨Create gg⃗outs 5 ⟩ Used in section 4.

⟨Process the command line 2 ⟩ Used in section 1.

GATES-TO-WIRES

Section Page
Intro . 1 1
Index . 6 4

