
§1 GB BOOKS INTRODUCTION 1

Important: Before reading GB BOOKS, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the book subroutine, which creates a family of
undirected graphs that are based on classic works of literature. It also contains the bi book subroutine,
which creates a related family of bipartite graphs. An example of the use of book can be found in the
demonstration program BOOK COMPONENTS.

⟨ gb_books.h 1 ⟩ ≡
extern Graph ∗book ();
extern Graph ∗bi book ();

See also sections 6, 18, and 23.

2. The subroutine call book (⟨title⟩, n, x,first chapter , last chapter , in weight , out weight , seed) constructs a
graph based on the information in ⟨title⟩.dat, where ⟨title⟩ is either "anna" (for Anna Karenina), "david"
(for David Copperfield), "jean" (for Les Misérables), "huck" (for Huckleberry Finn), or "homer" (for The
Iliad). Each vertex of the graph corresponds to one of the characters in the selected book. Edges between
vertices correspond to encounters between those characters. The length of each edge is 1.
Subsets of the book can be selected by specifying that the edge data should be restricted to chap-

ters between first chapter and last chapter , inclusive. If first chapter = 0, the result is the same as if
first chapter = 1. If last chapter = 0 or if last chapter exceeds the total number of chapters in the book,
the result is the same as if last chapter were the number of the book’s final chapter.
The constructed graph will have min(n,N)− x vertices, where N is the total number of characters in the

selected book. However, if n is zero, n is automatically made equal to the maximum possible value, N . If
n is less than N , the n− x characters will be selected by assigning a weight to each character and choosing
the n with largest weight, then excluding the largest x of these, using random numbers to break ties in case
of equal weights. Weights are computed by the formula

in weight · chapters in + out weight · chapters out ,

where chapters in is the number of chapters between first chapter and last chapter in which a particular
character appears, and chapters out is the number of other chapters in which that character appears. Both
in weight and out weight must be at most 1,000,000 in absolute value.
Vertices of the graph will appear in order of decreasing weight. The seed parameter defines the pseudo-

random numbers used wherever a “random” choice between equal-weight vertices needs to be made. As
usual with GraphBase routines, different choices of seed will in general produce different selections, but in a
system-independent manner; identical results will be obtained on all computers when identical parameters
have been specified. Any seed value between 0 and 231 − 1 is permissible.

2 INTRODUCTION GB BOOKS §3

3. Examples: The call book ("anna", 0, 0, 0, 0, 0, 0, 0) will construct a graph on 138 vertices that represent
all 138 characters of Tolstoy’s Anna Karenina, as recorded in anna.dat. Two vertices will be adjacent if the
corresponding characters encounter each other anywhere in the book. The call book ("anna", 50, 0, 0, 0, 1, 1, 0)
is similar, but it is restricted to the 50 characters that occur most frequently, i.e., in the most chapters. The
call book ("anna", 50, 0, 10, 120, 1, 1, 0) has the same vertices, but it has edges only for encounters that take
place between chapter 10 and chapter 120, inclusive. The call book ("anna", 50, 0, 10, 120, 1, 0, 0) is similar,
but its vertices are the 50 characters that occur most often in chapters 10 through 120, without regard to
how often they occur in the rest of the book. The call book ("anna", 50, 0, 10, 120, 0, 0, 0) is also similar, but
it chooses 50 characters completely at random (possibly from those that don’t occur in the selected chapters
at all).
Parameter x, which causes the x vertices of highest weight to be excluded, is usually either 0 or 1. It is

provided primarily so that users can set x = 1 with respect to David Copperfield and Huckleberry Finn;
those novels are narrated by their principal character, so they have edges between the principal character and
almost everybody else. (Characters cannot get into the action of a first-person account unless they encounter
the narrator or unless the narrator is quoting some other person’s story.) The corresponding graphs tend
to have more interesting connectivity properties if we leave the narrator out by setting x = 1. For example,
there are 87 characters in David Copperfield; the call book ("david", 0, 1, 0, 0, 1, 1, 0) produces a graph with
86 vertices, one for every character except David Copperfield himself.

4. The subroutine call bi book (⟨title⟩, n, x,first chapter , last chapter , in weight , out weight , seed) produces
a bipartite graph in which the vertices of the first part are exactly the same as the vertices of the graph re-
turned by book , while the vertices of the second part are the selected chapters. For example, bi book ("anna",
50, 0, 10, 120, 1, 1, 0) creates a bipartite graph with 50+111 vertices. There is an edge between each character
and the chapters in which that character appears.

5. Chapter numbering needs further explanation. Anna Karenina has 239 chapters, which are numbered
1.1 through 8.19 in the work itself but renumbered 1 through 239 as far as the book routine is concerned.
Thus, setting first chapter = 10 and last chapter = 120 turns out to be equivalent to selecting chapters 1.10
through 4.19 (more precisely, chapter 10 of book 1 through chapter 19 of book 4). Les Misérables has an even
more involved scheme; its 356 chapters range from 1.1.1 (part 1, book 1, chapter 1) to 5.9.6 (part 5, book 9,
chapter 6). After book or bi book has created a graph, the external integer variable chapters will contain
the total number of chapters, and chap name will be an array of strings containing the structured chapter
numbers. For example, after book ("jean", . . .), we will have chapters = 356, chap name [1] = "1.1.1", . . . ,
chap name [356] = "5.9.6"; chap name [0] will be "".

#define MAX_CHAPS 360 /∗ no book will have this many chapters ∗/
⟨External variables 5 ⟩ ≡
long chapters ; /∗ the total number of chapters in the selected book ∗/
char ∗chap name [MAX_CHAPS] = {""}; /∗ string names of those chapters ∗/

This code is used in section 8.

6. As usual, we put declarations of the external variables into the header file for users to include.

⟨ gb_books.h 1 ⟩ +≡
extern long chapters ; /∗ the total number of chapters in the selected book ∗/
extern char ∗chap name []; /∗ string names of those chapters ∗/

7. If the book or bi book routine encounters a problem, it returns Λ (NULL), after putting a code number
into the external variable panic code . This code number identifies the type of failure. Otherwise book
returns a pointer to the newly created graph, which will be represented with the data structures explained
in GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }
format node long /∗ the node type is defined below ∗/

§8 GB BOOKS INTRODUCTION 3

8. The C file gb_books.c has the overall shape shown here. It makes use of an internal subroutine called
bgraph , which combines the work of book and bi book .

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
#include "gb_sort.h" /∗ and the gb linksort routine ∗/

⟨Preprocessor definitions ⟩
⟨Type declarations 13 ⟩
⟨Private variables 11 ⟩
⟨External variables 5 ⟩
static Graph ∗bgraph (bipartite , title , n, x,first chapter , last chapter , in weight , out weight , seed)

long bipartite ; /∗ should we make the graph bipartite? ∗/
char ∗title ; /∗ identification of the selected book ∗/
unsigned long n; /∗ number of vertices desired before exclusion ∗/
unsigned long x; /∗ number of vertices to exclude ∗/
unsigned long first chapter , last chapter ; /∗ interval of chapters leading to edges ∗/
long in weight ; /∗ weight coefficient pertaining to chapters in that interval ∗/
long out weight ; /∗ weight coefficient pertaining to chapters not in that interval ∗/
long seed ; /∗ random number seed ∗/

{ ⟨Local variables 9 ⟩
gb init rand (seed);
⟨Check that the parameters are valid 10 ⟩;
⟨Skim the data file, recording the characters and computing their statistics 15 ⟩;
⟨Choose the vertices and put them into an empty graph 27 ⟩;
⟨Read the data file more carefully and fill the graph as instructed 29 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ (expletive deleted) we ran out of memory somewhere back there ∗/

}
return new graph ;

}
Graph ∗book (title , n, x,first chapter , last chapter , in weight , out weight , seed)

char ∗title ;
unsigned long n, x, first chapter , last chapter ;
long in weight , out weight , seed ;

{ return bgraph (0L, title , n, x,first chapter , last chapter , in weight , out weight , seed); }
Graph ∗bi book (title , n, x,first chapter , last chapter , in weight , out weight , seed)

char ∗title ;
unsigned long n, x, first chapter , last chapter ;
long in weight , out weight , seed ;

{ return bgraph (1L, title , n, x,first chapter , last chapter , in weight , out weight , seed); }

9. ⟨Local variables 9 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by book or bi book ∗/
register long j, k; /∗ all-purpose indices ∗/
long characters ; /∗ the total number of characters in the selected book ∗/
register node ∗p; /∗ information about the current character ∗/

See also section 21.

This code is used in section 8.

4 INTRODUCTION GB BOOKS §10

10. #define MAX_CHARS 600 /∗ there won’t be more characters than this ∗/
⟨Check that the parameters are valid 10 ⟩ ≡
if (n ≡ 0) n = MAX_CHARS;
if (first chapter ≡ 0) first chapter = 1;
if (last chapter ≡ 0) last chapter = MAX_CHAPS;
if (in weight > 1000000 ∨ in weight < −1000000 ∨ out weight > 1000000 ∨ out weight < −1000000)
panic(bad specs); /∗ the magnitude of at least one weight is too big ∗/

sprintf (file name , "%.6s.dat", title);
if (gb open (file name) ̸= 0) panic(early data fault); /∗ couldn’t open the file; io errors tells why ∗/

This code is used in section 8.

11. ⟨Private variables 11 ⟩ ≡
static char file name [] = "xxxxxx.dat";

See also sections 14 and 24.

This code is used in section 8.

§12 GB BOOKS VERTICES 5

12. Vertices. Each character in a book has been given a two-letter code name for internal use. The
code names are explained at the beginning of each data file by a number of lines that look like this:

XX ⟨name⟩,⟨description⟩

For example, here’s one of the lines near the beginning of "anna.dat":

AL Alexey Alexandrovitch Karenin, minister of state

The ⟨name⟩ does not contain a comma; the ⟨description⟩ might.
A blank line follows the cast of characters.
Internally, we will think of the two-letter code as a radix-36 integer. Thus AA will be the number 10×36+10,

and ZZ will be 35× 36 + 35. The gb number routine in GB IO is set up to input radix-36 integers just as it
does hexadecimal ones. In The Iliad, many of the minor characters have numeric digits in their code names
because the total number of characters is too large to permit mnemonic codes for everybody.

#define MAX_CODE 1296 /∗ 36× 36, the number of two-digit codes in radix 36 ∗/

13. In order to choose the vertices, we want to represent each character as a node whose key corresponds
to its weight; then the gb linksort routine of GB SORT will provide the desired rank-ordering. We will find
it convenient to use these nodes for all the data processing that bgraph has to do.

⟨Type declarations 13 ⟩ ≡
typedef struct node struct { /∗ records to be sorted by gb linksort ∗/
long key ; /∗ the nonnegative sort key (weight plus 230) ∗/
struct node struct ∗link ; /∗ pointer to next record ∗/
long code ; /∗ code number of this character ∗/
long in ; /∗ number of occurrences in selected chapters ∗/
long out ; /∗ number of occurrences in unselected chapters ∗/
long chap ; /∗ seen most recently in this chapter ∗/
Vertex ∗vert ; /∗ vertex corresponding to this character ∗/

} node;

This code is used in section 8.

14. Not only do nodes point to codes, we also want codes to point to nodes.

⟨Private variables 11 ⟩ +≡
static node node block [MAX_CHARS]; /∗ array of nodes for working storage ∗/
static node ∗xnode [MAX_CODE]; /∗ the node, if any, having a given code ∗/

15. We will read the data file twice, once quickly (to collect statistics) and once more thoroughly (to record
detailed information). Here is the quick version.

⟨Skim the data file, recording the characters and computing their statistics 15 ⟩ ≡
⟨Read the character codes at the beginning of the data file, and prepare a node for each one 16 ⟩;
⟨Skim the chapter information, counting the number of chapters in which each character appears 19 ⟩;
if (gb close () ̸= 0) panic(late data fault); /∗ checksum or other failure in data file; see io errors ∗/

This code is used in section 8.

6 VERTICES GB BOOKS §16

16. ⟨Read the character codes at the beginning of the data file, and prepare a node for each one 16 ⟩ ≡
for (k = 0; k < MAX_CODE; k++) xnode [k] = Λ;
{ register long c; /∗ current code entering the system ∗/
p = node block ; /∗ current node entering the system ∗/
while ((c = gb number (36)) ̸= 0) { /∗ note that 00 is not a legal code ∗/
if (c ≥ MAX_CODE ∨ gb char () ̸= ’␣’) panic(syntax error); /∗ unreadable line in data file ∗/
if (p ≥ &node block [MAX_CHARS]) panic(syntax error + 1); /∗ data has too many characters ∗/
p⃗ link = (p ≡ node block ? Λ : p− 1);
p⃗ code = c;
xnode [c] = p;
p⃗ in = p⃗ out = p⃗ chap = 0;
p⃗ vert = Λ;
p++;
gb newline ();

}
characters = p− node block ;
gb newline (); /∗ bypass the blank line that terminates the character data ∗/

}
This code is used in section 15.

17. Later we will read through this part of the file again, extracting additional information if it turns out
to be relevant. The ⟨description⟩ string is provided to users in a desc field, in case anybody cares to look
at it. The in and out statistics are also made available in utility fields called in count and out count . The
code value is placed in the short code field.

#define desc z.S /∗ utility field z points to the ⟨description⟩ string ∗/
#define in count y.I /∗ utility field y counts appearances in selected chapters ∗/
#define out count x.I /∗ utility field x counts appearances in other chapters ∗/
#define short code u.I /∗ utility field u contains a radix-36 number ∗/
⟨Read the data about characters again, noting vertex names and the associated descriptions 17 ⟩ ≡

{ register long c; /∗ current code entering the system a second time ∗/
while ((c = gb number (36)) ̸= 0) { register Vertex ∗v = xnode [c]⃗ vert ;

if (v) {
if (gb char () ̸= ’␣’) panic(impossible); /∗ can’t happen ∗/
gb string (str buf , ’,’); /∗ scan the ⟨name⟩ part ∗/
v⃗ name = gb save string (str buf);
if (gb char () ̸= ’,’) panic(syntax error + 2); /∗ missing comma after ⟨name⟩ ∗/
if (gb char () ̸= ’␣’) panic(syntax error + 3); /∗ missing space after comma ∗/
gb string (str buf , ’\n’); /∗ scan the ⟨description⟩ part ∗/
v⃗ desc = gb save string (str buf);
v⃗ in count = xnode [c]⃗ in ;
v⃗ out count = xnode [c]⃗ out ;
v⃗ short code = c;

}
gb newline ();

}
gb newline (); /∗ bypass the blank line that terminates the character data ∗/

}
This code is used in section 29.

§18 GB BOOKS VERTICES 7

18. ⟨ gb_books.h 1 ⟩ +≡
#define desc z.S /∗ utility field definitions for the header file ∗/
#define in count y.I
#define out count x.I
#define short code u.I

8 EDGES GB BOOKS §19

19. Edges. The second part of the data file has a line for each chapter, containing “cliques of encounters.”
For example, the line

3.22:AA,BB,CC,DD;CC,DD,EE;AA,FF

means that, in chapter 22 of book 3, there were encounters between the pairs

AA-BB, AA-CC, AA-DD, BB-CC, BB-DD, CC-DD, CC-EE, DD-EE, and AA-FF.

(The encounter CC−DD is specified twice, once in the clique AA,BB,CC,DD and once in CC,DD,EE; this does
not imply anything about the actual number of encounters between CC and DD in the chapter.)

A clique might involve one character only, when that character is featured in sort of a soliloquy.
A chapter might contain no references to characters at all. In such a case the ‘:’ following the chapter

number is omitted.
There might be more encounters than will fit on a single line. In such cases, continuation lines begin with

‘&:’. This convention turns out to be needed only in homer.dat; chapters in The Iliad are substantially
more complex than the chapters in other GraphBase books.
On our first pass over the data, we simply want to compute statistics about who appears in what chapters,

so we ignore the distinction between commas and semicolons.

⟨Skim the chapter information, counting the number of chapters in which each character appears 19 ⟩ ≡
for (k = 1; k < MAX_CHAPS ∧ ¬gb eof (); k++) {
gb string (str buf , ’:’); /∗ read past the chapter number ∗/
if (str buf [0] ≡ ’&’) k−−; /∗ continuation of previous chapter ∗/
while (gb char () ̸= ’\n’) { register long c = gb number (36);

if (c ≥ MAX_CODE) panic(syntax error + 4); /∗ missing punctuation between characters ∗/
p = xnode [c];
if (p ≡ Λ) panic(syntax error + 5); /∗ unknown character ∗/
if (p⃗ chap ̸= k) {

p⃗ chap = k;
if (k ≥ first chapter ∧ k ≤ last chapter) p⃗ in++;
else p⃗ out ++;

}
}
gb newline ();

}
if (k ≡ MAX_CHAPS) panic(syntax error + 6); /∗ too many chapters ∗/
chapters = k − 1;

This code is used in section 15.

§20 GB BOOKS EDGES 9

20. Our second pass over the data is very similar to the first, if we are simply computing a bipartite graph.
In that case we add an edge to the graph between each selected chapter and each selected character in that
chapter. Local variable chap base will point to a vertex such that chap base + k is the vertex corresponding
to chapter k.
The in count of a chapter vertex is the degree of that vertex, i.e., the number of selected characters

that appear in the corresponding chapter. The out count is the number of characters that appear in the
chapter but were omitted from the graph. Thus the in count and out count for chapters are analogous to
the in count and out count for characters.

⟨Read the chapter information a second time and create the appropriate bipartite edges 20 ⟩ ≡
{
for (p = node block ; p < node block + characters ; p++) p⃗ chap = 0;
for (k = 1; ¬gb eof (); k++) {

gb string (str buf , ’:’); /∗ read the chapter number ∗/
if (str buf [0] ≡ ’&’) k−−;
else {
if (str buf [strlen (str buf)− 1] ≡ ’\n’) str buf [strlen (str buf)− 1] = ’\0’;
chap name [k] = gb save string (str buf);

}
if (k ≥ first chapter ∧ k ≤ last chapter) { register Vertex ∗u = chap base + k;

if (str buf [0] ̸= ’&’) {
u⃗ name = chap name [k];
u⃗ desc = null string ;
u⃗ in count = u⃗ out count = 0;

}
while (gb char () ̸= ’\n’) { register long c = gb number (36);

p = xnode [c];
if (p⃗ chap ≠ k) { register Vertex ∗v = p⃗ vert ;

p⃗ chap = k;
if (v) { gb new edge (v, u, 1L);
u⃗ in count ++;

} else u⃗ out count ++;
}

}
}
gb newline ();

}
}

This code is used in section 29.

21. ⟨Local variables 9 ⟩ +≡
Vertex ∗chap base ; /∗ the bipartite vertex for chapter k is chap base + k ∗/

10 EDGES GB BOOKS §22

22. The second pass has to work a little harder when we are recording encounters from cliques, but the
logic isn’t difficult really. We insert a reference to the first chapter that generated each edge, in utility field
chap no of the corresponding Arc record.

#define chap no a.I /∗ utility field a holds a chapter number ∗/
⟨Read the chapter information a second time and create the appropriate edges for encounters 22 ⟩ ≡
for (k = 1; ¬gb eof (); k++) { char ∗s;
s = gb string (str buf , ’:’); /∗ read the chapter number ∗/
if (str buf [0] ≡ ’&’) k−−;
else { if (∗(s− 2) ≡ ’\n’) ∗(s− 2) = ’\0’;

chap name [k] = gb save string (str buf);
}
if (k ≥ first chapter ∧ k ≤ last chapter) { register long c = gb char ();

while (c ̸= ’\n’) { register Vertex ∗∗pp = clique table ;
register Vertex ∗∗qq , ∗∗rr ; /∗ pointers within the clique table ∗/
do { c = gb number (36); /∗ set c to code for next character of clique ∗/
if (xnode [c]⃗ vert) /∗ is that character a selected vertex? ∗/
∗pp++ = xnode [c]⃗ vert ; /∗ if so, that vertex joins the current clique ∗/

c = gb char ();
} while (c ≡ ’,’); /∗ repeat until end of the clique ∗/
for (qq = clique table ; qq + 1 < pp ; qq ++)
for (rr = qq + 1; rr < pp ; rr ++)
⟨Make the vertices ∗qq and ∗rr adjacent, if they aren’t already 25 ⟩;

}
}
gb newline ();

}
This code is used in section 29.

23. ⟨ gb_books.h 1 ⟩ +≡
#define chap no a.I /∗ utility field definition in the header file ∗/

24. ⟨Private variables 11 ⟩ +≡
static Vertex ∗clique table [30]; /∗ pointers to vertices in the current clique ∗/

25. ⟨Make the vertices ∗qq and ∗rr adjacent, if they aren’t already 25 ⟩ ≡
{ register Vertex ∗u = ∗qq , ∗v = ∗rr ;
register Arc ∗a;
for (a = u⃗ arcs ; a; a = a⃗ next)
if (a⃗ tip ≡ v) goto found ;

gb new edge (u, v, 1L); /∗ not found, so they weren’t already adjacent ∗/
if (u < v) a = u⃗ arcs ;
else a = v⃗ arcs ; /∗ the new edge consists of arcs a and a+ 1 ∗/
a⃗ chap no = (a+ 1)⃗ chap no = k;

found : ;
}

This code is used in section 22.

§26 GB BOOKS ADMINISTRATION 11

26. Administration. The program is now complete except for a few missing organizational details. I
will add these after lunch.

27. OK, I’m back; what needs to be done? The main thing is to create the graph itself.

⟨Choose the vertices and put them into an empty graph 27 ⟩ ≡
if (n > characters) n = characters ;
if (x > n) x = n;
if (last chapter > chapters) last chapter = chapters ;
if (first chapter > last chapter) first chapter = last chapter + 1;
new graph = gb new graph (n− x+ (bipartite ? last chapter − first chapter + 1 : 0));
if (new graph ≡ Λ) panic(no room); /∗ out of memory already ∗/
strcpy (new graph⃗util types , "IZZIISIZZZZZZZ"); /∗ declare the types of utility fields ∗/
sprintf (new graph⃗ id , "%sbook(\"%s\",%lu,%lu,%lu,%lu,%ld,%ld,%ld)", bipartite ? "bi_" : "", title ,

n, x,first chapter , last chapter , in weight , out weight , seed);
if (bipartite) {
mark bipartite (new graph , n− x);
chap base = new graph⃗vertices + (new graph⃗n 1 − first chapter);

}
⟨Compute the weights and assign vertices to chosen nodes 28 ⟩;

This code is used in section 8.

28. ⟨Compute the weights and assign vertices to chosen nodes 28 ⟩ ≡
for (p = node block ; p < node block + characters ; p++)
p⃗ key = in weight ∗ (p⃗ in) + out weight ∗ (p⃗ out) + #40000000;

gb linksort (node block + characters − 1);
k = n; /∗ we will look at this many nodes ∗/
{ register Vertex ∗v = new graph⃗vertices ; /∗ the next vertex to define ∗/
for (j = 127; j ≥ 0; j−−)
for (p = (node ∗) gb sorted [j]; p; p = p⃗ link) {

if (x > 0) x−−; /∗ ignore this node ∗/
else p⃗ vert = v++; /∗ choose this node ∗/
if (−−k ≡ 0) goto done ;

}
}

done : ;

This code is used in section 27.

29. Once the graph is there, we’re ready to fill it in.

⟨Read the data file more carefully and fill the graph as instructed 29 ⟩ ≡
if (gb open (file name) ̸= 0) panic(impossible + 1);

/∗ this can’t happen, because we were successful before ∗/
⟨Read the data about characters again, noting vertex names and the associated descriptions 17 ⟩;
if (bipartite) ⟨Read the chapter information a second time and create the appropriate bipartite edges 20 ⟩
else ⟨Read the chapter information a second time and create the appropriate edges for encounters 22 ⟩;
if (gb close () ̸= 0) panic(impossible + 2); /∗ again, can hardly happen the second time around ∗/

This code is used in section 8.

12 INDEX GB BOOKS §30

30. Index. As usual, we close with an index that shows where the identifiers of gb books are defined and
used.

a: 25.
alloc fault : 8.
Arc: 22, 25.
arcs : 25.
bad specs : 10.
bgraph : 8, 13.
bi book : 1, 4, 5, 7, 8, 9.
bipartite : 8, 27, 29.
book : 1, 2, 3, 4, 5, 7, 8, 9.
c: 16, 17, 19, 20, 22.
chap : 13, 16, 19, 20.
chap base : 20, 21, 27.
chap name : 5, 6, 20, 22.
chap no : 22, 23, 25.
chapters : 5, 6, 19, 27.
characters : 9, 16, 20, 27, 28.
clique table : 22, 24.
code : 13, 16.
desc : 17, 18, 20.
done : 28.
early data fault : 10.
file name : 10, 11, 29.
first chapter : 2, 4, 5, 8, 10, 19, 20, 22, 27.
found : 25.
gb char : 16, 17, 19, 20, 22.
gb close : 15, 29.
gb eof : 19, 20, 22.
gb init rand : 8.
gb linksort : 8, 13, 28.
gb new edge : 20, 25.
gb new graph : 27.
gb newline : 16, 17, 19, 20, 22.
gb number : 12, 16, 17, 19, 20, 22.
gb open : 10, 29.
gb recycle : 8.
gb save string : 17, 20, 22.
gb sorted : 28.
gb string : 17, 19, 20, 22.
gb trouble code : 7, 8.
Graph: 1, 8, 9.
id : 27.
impossible : 17, 29.
in : 13, 16, 17, 19, 28.
in count : 17, 18, 20.
in weight : 2, 4, 8, 10, 27, 28.
io errors : 10, 15.
j: 9.
k: 9.
key : 13, 28.
last chapter : 2, 4, 5, 8, 10, 19, 20, 22, 27.

late data fault : 15.
link : 13, 16, 28.
mark bipartite : 27.
MAX_CHAPS: 5, 10, 19.
MAX_CHARS: 10, 14, 16.
MAX_CODE: 12, 14, 16, 19.
n: 8.
n 1 : 27.
name : 17, 20.
new graph : 8, 9, 27, 28.
next : 25.
no room : 27.
node: 9, 13, 14, 28.
node block : 14, 16, 20, 28.
node struct: 13.
null string : 20.
out : 13, 16, 17, 19, 28.
out to lunch: 26.
out count : 17, 18, 20.
out weight : 2, 4, 8, 10, 27, 28.
p: 9.
panic : 7, 8, 10, 15, 16, 17, 19, 27, 29.
panic code : 7.
pp : 22.
qq : 22, 25.
rr : 22, 25.
s: 22.
seed : 2, 4, 8, 27.
short code : 17, 18.
sprintf : 10, 27.
str buf : 17, 19, 20, 22.
strcpy : 27.
strlen : 20.
syntax error : 16, 17, 19.
tip : 25.
title : 8, 10, 27.
u: 20, 25.
util types : 27.
v: 17, 20, 25, 28.
vert : 13, 16, 17, 20, 22, 28.
Vertex: 13, 17, 20, 21, 22, 24, 25, 28.
vertices : 27, 28.
x: 8.
xnode : 14, 16, 17, 19, 20, 22.

GB BOOKS NAMES OF THE SECTIONS 13

⟨Check that the parameters are valid 10 ⟩ Used in section 8.

⟨Choose the vertices and put them into an empty graph 27 ⟩ Used in section 8.

⟨Compute the weights and assign vertices to chosen nodes 28 ⟩ Used in section 27.

⟨External variables 5 ⟩ Used in section 8.

⟨Local variables 9, 21 ⟩ Used in section 8.

⟨Make the vertices ∗qq and ∗rr adjacent, if they aren’t already 25 ⟩ Used in section 22.

⟨Private variables 11, 14, 24 ⟩ Used in section 8.

⟨Read the chapter information a second time and create the appropriate bipartite edges 20 ⟩ Used in

section 29.

⟨Read the chapter information a second time and create the appropriate edges for encounters 22 ⟩ Used in

section 29.

⟨Read the character codes at the beginning of the data file, and prepare a node for each one 16 ⟩ Used in

section 15.

⟨Read the data about characters again, noting vertex names and the associated descriptions 17 ⟩ Used in

section 29.

⟨Read the data file more carefully and fill the graph as instructed 29 ⟩ Used in section 8.

⟨Skim the chapter information, counting the number of chapters in which each character appears 19 ⟩ Used

in section 15.

⟨Skim the data file, recording the characters and computing their statistics 15 ⟩ Used in section 8.

⟨Type declarations 13 ⟩ Used in section 8.

⟨ gb_books.h 1, 6, 18, 23 ⟩

May 19, 2018 at 02:29

GB BOOKS
Section Page

Introduction . 1 1
Vertices . 12 5
Edges . 19 8
Administration . 26 11
Index . 30 12

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

