
§1 GB GAMES INTRODUCTION 1

Important: Before reading GB GAMES, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the games subroutine, which creates a family of
undirected graphs based on college football scores. An example of the use of this procedure can be found in
the demo program FOOTBALL.

⟨ gb_games.h 1 ⟩ ≡
extern Graph ∗games ();

See also section 5.

2 INTRODUCTION GB GAMES §2

2. The subroutine call games (n, ap0 weight , upi0 weight , ap1 weight , upi1 weight , first day , last day ,
seed) constructs a graph based on the information in games.dat. Each vertex of the graph corresponds to
one of 120 football teams at American colleges and universities (more precisely, to the 106 college football
teams of division I-A together with the 14 division I-AA teams of the Ivy League and the Patriot League).
Each edge of the graph corresponds to one of the 638 games played between those teams during the 1990
season.
An arc from vertex u to vertex v is assigned a length representing the number of points scored by u when

playing v. Thus the graph isn’t really “undirected,” although it is true that its arcs are paired (i.e., that
u played v if and only if v played u). A truly undirected graph with the same vertices and edges can be
obtained by applying the complement routine of GB BASIC.

The constructed graph will have min(n, 120) vertices. If n is less than 120, the n teams will be selected
by assigning a weight to each team and choosing the n with largest weight, using random numbers to break
ties in case of equal weights. Weights are computed by the formula

ap0 weight · ap0 + upi0 weight · upi0 + ap1 weight · ap1 + upi1 weight · upi1 ,

where ap0 and upi0 are the point scores given to a team in the Associated Press and United Press
International polls at the beginning of the season, and ap1 and upi1 are the similar scores given at the
end of the season. (The ap scores were obtained by asking 60 sportswriters to choose and rank the top 25
teams, assigning 25 points to a team ranked 1st and 1 point to a team ranked 25th; thus the total of each of
the ap scores, summed over all teams, is 19500. The upi scores were obtained by asking football coaches to
choose and rank the top 15 teams, assigning 15 points to a team ranked 1st and 1 point to a team ranked
15th. In the case of upi0 , there were 48 coaches voting, making 5760 points altogether; but in the case of
upi1 , 59 coaches were polled, yielding a total of 7080 points. The coaches agreed not to vote for any team
that was on probation for violating NCAA rules, but the sportswriters had no such policy.)
Parameters first day and last day can be used to vary the number of edges; only games played between

first day and last day , inclusive, will be included in the constructed graph. Day 0 was August 26, 1990,
when Colorado and Tennessee competed in the Disneyland Pigskin Classic. Day 128 was January 1, 1991,
when the final end-of-season bowl games were played. About half of each team’s games were played between
day 0 and day 50. If last day = 0, the value of last day is automatically increased to 128.

As usual in GraphBase routines, you can set n = 0 to get the default situation where n has its max-
imum value. For example, either games (0, 0, 0, 0, 0, 0, 0, 0) or games (120, 0, 0, 0, 0, 0, 0, 0) produces the full
graph; games (0, 0, 0, 0, 0, 50, 0, 0) or games (120, 0, 0, 0, 0, 50, 0, 0) or games (120, 0, 0, 0, 0, 50, 128, 0) produces
the graph for the last half of the season. One way to select a subgraph containing the 30 “best” teams is
to ask for games (30, 0, 0, 1, 2, 0, 0, 0), which adds the votes of the sportswriters to the votes of the coaches
(considering that a coach’s first choice is worth 30 points while a sportswriter’s first choice is worth only
25). It turns out that 67 of the teams did not receive votes in any of the four polls; the subroutine call
games (53, 1, 1, 1, 1, 0, 0, 0) will pick out the 53 teams that were selected at least once by some sportswriter
or coach, and games (67,−1,−1,−1,−1, 0, 0, 0) will pick out the 67 that were not. A random selection of
60 teams can be obtained by calling games (60, 0, 0, 0, 0, 0, 0, s). Different choices of the seed number s will
produce different selections in a system-independent manner; any value of s between 0 and 231 − 1 is per-
missible. If you ask for games (120, 0, 0, 0, 0, 0, 0, s) with different choices of s, you always get the full graph,
but the vertices will appear in different (random) orderings depending on s.
Parameters ap0 weight , upi0 weight , ap1 weight , and upi1 weight must be at most 217 = 131072 in

absolute value.

#define MAX_N 120
#define MAX_DAY 128
#define MAX_WEIGHT 131072
#define ap u.I /∗ Associated Press scores: (ap0 ≪ 16) + ap1 ∗/
#define upi v.I /∗ United Press International scores (upi0 ≪ 16) + upi1 ∗/

§3 GB GAMES INTRODUCTION 3

3. Most of the teams belong to a “conference,” and they play against almost every other team that belongs
to the same conference. For example, Stanford and nine other teams belong to the Pacific Ten conference.
Eight of Stanford’s eleven games were against other teams of the Pacific Ten; the other three were played
against Colorado (from the Big Eight), San José State (from the Big West) and Notre Dame (which is
independent). The graphs produced by games therefore illustrate “cliquey” patterns of social interaction.

Eleven different conferences are included in games.dat. Utility field z.S of a vertex is set to the name of a
team’s conference, or to Λ if that team is independent. (Exactly 24 of the I-A football teams were independent
in 1990.) Two teams u and v belong to the same conference if and only if u⃗ conference ≡ v⃗ conference and
u⃗ conference ̸= Λ.

#define conference z.S

4. Each team has a nickname, which is recorded in utility field y.S. For example, Georgia Tech’s team is
called the Yellow Jackets. Six teams (Auburn, Clemson, Memphis State, Missouri, Pacific, and Princeton)
are called the Tigers, and five teams (Fresno State, Georgia, Louisiana Tech, Mississippi State, Yale) are
called the Bulldogs. But most of the teams have a unique nickname, and 94 distinct nicknames exist.
A shorthand code for team names is also provided, in the abbr field.

#define nickname y.S
#define abbr x.S

5. If a points to an arc from u to v, utility field a⃗ a.I contains the value 3 if u was the home team, 1 if v
was the home team, and 2 if both teams played on neutral territory. The date of that game, represented as
a integer number of days after August 26, 1990, appears in utility field a⃗ b.I. The arcs in each vertex list
v⃗ arcs appear in reverse order of their dates: last game first and first game last.

#define HOME 1
#define NEUTRAL 2 /∗ this value is halfway between HOME and AWAY ∗/
#define AWAY 3
#define venue a.I
#define date b.I

⟨ gb_games.h 1 ⟩ +≡
#define ap u.I /∗ repeat the definitions in the header file ∗/
#define upi v.I
#define abbr x.S
#define nickname y.S
#define conference z.S
#define HOME 1
#define NEUTRAL 2
#define AWAY 3
#define venue a.I
#define date b.I

6. If the games routine encounters a problem, it returns Λ (NULL), after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise games returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }

4 INTRODUCTION GB GAMES §7

7. The C file gb_games.c has the following overall shape:

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ we will use the GB GRAPH data structures ∗/
#include "gb_sort.h" /∗ and gb linksort for sorting ∗/
⟨Preprocessor definitions ⟩
⟨Type declarations 11 ⟩
⟨Private variables 13 ⟩
⟨Private functions 23 ⟩
Graph ∗games (n, ap0 weight , upi0 weight , ap1 weight , upi1 weight ,first day , last day , seed)

unsigned long n; /∗ number of vertices desired ∗/
long ap0 weight ; /∗ coefficient of ap0 in the weight function ∗/
long ap1 weight ; /∗ coefficient of ap1 in the weight function ∗/
long upi0 weight ; /∗ coefficient of upi0 in the weight function ∗/
long upi1 weight ; /∗ coefficient of upi1 in the weight function ∗/
long first day ; /∗ lower cutoff for games to be considered ∗/
long last day ; /∗ upper cutoff for games to be considered ∗/
long seed ; /∗ random number seed ∗/

{ ⟨Local variables 8 ⟩
gb init rand (seed);
⟨Check that the parameters are valid 9 ⟩;
⟨Set up a graph with n vertices 10 ⟩;
⟨Read the first part of games.dat and compute team weights 14 ⟩;
⟨Determine the n teams to use in the graph 19 ⟩;
⟨Put the appropriate edges into the graph 21 ⟩;
if (gb close () ̸= 0) panic(late data fault);

/∗ something’s wrong with "games.dat"; see io errors ∗/
gb free (working storage);
if (gb trouble code) {
gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

8. ⟨Local variables 8 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by games ∗/
register long j, k; /∗ all-purpose indices ∗/

This code is used in section 7.

9. ⟨Check that the parameters are valid 9 ⟩ ≡
if (n ≡ 0 ∨ n > MAX_N) n = MAX_N;
if (ap0 weight > MAX_WEIGHT ∨ ap0 weight < −MAX_WEIGHT ∨ upi0 weight > MAX_WEIGHT ∨ upi0 weight <

−MAX_WEIGHT ∨ ap1 weight > MAX_WEIGHT ∨ ap1 weight < −MAX_WEIGHT ∨ upi1 weight >
MAX_WEIGHT ∨ upi1 weight < −MAX_WEIGHT) panic(bad specs);

/∗ the magnitude of at least one weight is too big ∗/
if (first day < 0) first day = 0;
if (last day ≡ 0 ∨ last day > MAX_DAY) last day = MAX_DAY;

This code is used in section 7.

§10 GB GAMES INTRODUCTION 5

10. ⟨Set up a graph with n vertices 10 ⟩ ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "games(%lu,%ld,%ld,%ld,%ld,%ld,%ld,%ld)", n, ap0 weight , upi0 weight ,

ap1 weight , upi1 weight ,first day , last day , seed);
strcpy (new graph⃗util types , "IIZSSSIIZZZZZZ");

This code is used in section 7.

6 VERTICES GB GAMES §11

11. Vertices. As we read in the data, we construct a list of nodes, each of which contains a team’s name,
nickname, conference, and weight. After this list has been sorted by weight, the top n entries will be the
vertices of the new graph.

⟨Type declarations 11 ⟩ ≡
typedef struct node struct { /∗ records to be sorted by gb linksort ∗/
long key ; /∗ the nonnegative sort key (weight plus 230) ∗/
struct node struct ∗link ; /∗ pointer to next record ∗/
char name [24]; /∗ "College␣Name" ∗/
char nick [22]; /∗ "Team␣Nickname" ∗/
char abb [6]; /∗ "ABBR" ∗/
long a0 , u0 , a1 , u1 ; /∗ team scores in press polls ∗/
char ∗conf ; /∗ pointer to conference name ∗/
struct node struct ∗hash link ; /∗ pointer to next ABBR in hash list ∗/
Vertex ∗vert ; /∗ vertex corresponding to this team ∗/

} node;

This code is used in section 7.

12. The data in games.dat appears in two parts. The first 120 lines have the form

ABBR College Name(Team Nickname)Conference;a0,u0;a1,u1

and they give basic information about the teams. An internal abbreviation code ABBR is used to identify
each team in the second part of the data.
The second part presents scores of the games, and it contains two kinds of lines. If the first character of

a line is ‘>’, it means “change the current date,” and the remaining characters specify a date as a one-letter
month code followed by the day of the month. Otherwise the line gives scores of a game, using the ABBR

codes for two teams. The scores are separated by ‘@’ if the second team was the home team and by ‘,’ if
both teams were on neutral territory.
For example, two games were played on December 8, namely the annual Army-Navy game and the

California Raisin Bowl game. These are recorded in three lines of games.dat as follows:

>D8

NAVY20@ARMY30

SJSU48,CMICH24

We deduce that Navy played at Army’s home stadium, losing 20 to 30; moreover, San José State played
Central Michigan on neutral territory and won, 48 to 24. (The California Raisin Bowl is traditionally a
playoff between the champions of the Big West and Mid-American conferences.)

§13 GB GAMES VERTICES 7

13. In order to map ABBR codes to team names, we use a simple hash coding scheme. Two abbreviations
with the same hash address are linked together via the hash link address in their node.

The constants defined here are taken from the specific data in games.dat, because this routine is not
intended to be perfectly general.

#define HASH_PRIME 1009

⟨Private variables 13 ⟩ ≡
static long ma0 = 1451, mu0 = 666, ma1 = 1475, mu1 = 847;
/∗ maximum poll values in the data ∗/

static node ∗node block ; /∗ array of nodes holding team info ∗/
static node ∗∗hash block ; /∗ array of heads of hash code lists ∗/
static Area working storage ; /∗ memory needed only while games is working ∗/
static char ∗∗conf block ; /∗ array of conference names ∗/
static long m; /∗ the number of conference names known so far ∗/

This code is used in section 7.

14. ⟨Read the first part of games.dat and compute team weights 14 ⟩ ≡
node block = gb typed alloc(MAX_N + 2,node,working storage); /∗ leave room for string overflow ∗/
hash block = gb typed alloc(HASH_PRIME,node ∗,working storage);
conf block = gb typed alloc(MAX_N, char ∗,working storage);
m = 0;
if (gb trouble code) {
gb free (working storage);
panic(no room + 1); /∗ nowhere to copy the data ∗/

}
if (gb open ("games.dat") ̸= 0) panic(early data fault);

/∗ couldn’t open "games.dat" using GraphBase conventions; io errors tells why ∗/
for (k = 0; k < MAX_N; k++) ⟨Read and store data for team k 15 ⟩;

This code is used in section 7.

15. ⟨Read and store data for team k 15 ⟩ ≡
{ register node ∗p;
register char ∗q;
p = node block + k;
if (k) p⃗ link = p− 1;
q = gb string (p⃗ abb , ’␣’);
if (q > &p⃗ abb [6] ∨ gb char () ̸= ’␣’) panic(syntax error); /∗ out of sync in games.dat ∗/
⟨Enter p⃗ abb in the hash table 16 ⟩;
q = gb string (p⃗ name , ’(’);
if (q > &p⃗ name [24] ∨ gb char () ̸= ’(’) panic(syntax error + 1); /∗ team name too long ∗/
q = gb string (p⃗ nick , ’)’);
if (q > &p⃗ nick [22] ∨ gb char () ̸= ’)’) panic(syntax error + 2); /∗ team nickname too long ∗/
⟨Read the conference name for p 17 ⟩;
⟨Read the press poll scores for p and compute p⃗ key 18 ⟩;
gb newline ();

}
This code is used in section 14.

8 VERTICES GB GAMES §16

16. ⟨Enter p⃗ abb in the hash table 16 ⟩ ≡
{ long h = 0; /∗ the hash code ∗/
for (q = p⃗ abb ; ∗q; q++) h = (h+ h+ ∗q) % HASH_PRIME;
p⃗ hash link = hash block [h];
hash block [h] = p;

}
This code is used in section 15.

17. ⟨Read the conference name for p 17 ⟩ ≡
{
gb string (str buf , ’;’);
if (gb char () ̸= ’;’) panic(syntax error + 3); /∗ conference name clobbered ∗/
if (strcmp(str buf , "Independent") ̸= 0) {

for (j = 0; j < m; j++)
if (strcmp(str buf , conf block [j]) ≡ 0) goto found ;

conf block [m++] = gb save string (str buf);
found : p⃗ conf = conf block [j];
}

}
This code is used in section 15.

18. The key value computed here will be between 0 and 231, because of the bound we’ve imposed on the
weight parameters.

⟨Read the press poll scores for p and compute p⃗ key 18 ⟩ ≡
p⃗ a0 = gb number (10);
if (p⃗ a0 > ma0 ∨ gb char () ̸= ’,’) panic(syntax error + 4); /∗ first AP score clobbered ∗/
p⃗ u0 = gb number (10);
if (p⃗ u0 > mu0 ∨ gb char () ̸= ’;’) panic(syntax error + 5); /∗ first UPI score clobbered ∗/
p⃗ a1 = gb number (10);
if (p⃗ a1 > ma1 ∨ gb char () ̸= ’,’) panic(syntax error + 6); /∗ second AP score clobbered ∗/
p⃗ u1 = gb number (10);
if (p⃗ u1 > mu1 ∨ gb char () ̸= ’\n’) panic(syntax error + 7); /∗ second UPI score clobbered ∗/
p⃗ key = ap0 weight ∗(p⃗ a0)+upi0 weight ∗(p⃗ u0)+ap1 weight ∗(p⃗ a1)+upi1 weight ∗(p⃗ u1)+#40000000;

This code is used in section 15.

19. Once all the nodes have been set up, we can use the gb linksort routine to sort them into the desired
order. It builds 128 lists from which the desired nodes are readily accessed in decreasing order of weight,
using random numbers to break ties.
We set the abbreviation code to zero in every team that isn’t chosen. Then games involving that team

will be excluded when edges are generated below.

⟨Determine the n teams to use in the graph 19 ⟩ ≡
{ register node ∗p; /∗ the current node being considered ∗/
register Vertex ∗v = new graph⃗vertices ; /∗ the next vertex to use ∗/
gb linksort (node block + MAX_N − 1);
for (j = 127; j ≥ 0; j−−)
for (p = (node ∗) gb sorted [j]; p; p = p⃗ link) {

if (v < new graph⃗vertices + n) ⟨Add team p to the graph 20 ⟩
else p⃗ abb [0] = ’\0’; /∗ this team is not being used ∗/

}
}

This code is used in section 7.

§20 GB GAMES VERTICES 9

20. ⟨Add team p to the graph 20 ⟩ ≡
{
v⃗ ap = ((long)(p⃗ a0) ≪ 16) + p⃗ a1 ;
v⃗ upi = ((long)(p⃗ u0) ≪ 16) + p⃗ u1 ;
v⃗ abbr = gb save string (p⃗ abb);
v⃗ nickname = gb save string (p⃗ nick);
v⃗ conference = p⃗ conf ;
v⃗ name = gb save string (p⃗ name);
p⃗ vert = v++;

}
This code is used in section 19.

10 ARCS GB GAMES §21

21. Arcs. Finally, we read through the rest of games.dat, adding a pair of arcs for each game that
belongs to the selected time interval and was played by two of the selected teams.

⟨Put the appropriate edges into the graph 21 ⟩ ≡
{ register Vertex ∗u, ∗v;
register long today = 0; /∗ current day of play ∗/
long su , sv ; /∗ points scored by each team ∗/
long ven ; /∗ HOME if v is home team, NEUTRAL if on neutral ground ∗/
while (¬gb eof ()) {

if (gb char () ≡ ’>’) ⟨Change the current date 22 ⟩
else gb backup();
u = team lookup();
su = gb number (10);
ven = gb char ();
if (ven ≡ ’@’) ven = HOME;
else if (ven ≡ ’,’) ven = NEUTRAL;
else panic(syntax error + 8); /∗ bad syntax in game score line ∗/
v = team lookup();
sv = gb number (10);
if (gb char () ̸= ’\n’) panic(syntax error + 9); /∗ bad syntax in game score line ∗/
if (u ̸= Λ ∧ v ̸= Λ ∧ today ≥ first day ∧ today ≤ last day) ⟨Enter a new edge 24 ⟩;
gb newline ();

}
}

This code is used in section 7.

22. ⟨Change the current date 22 ⟩ ≡
{ register char c = gb char (); /∗ month code ∗/
register long d; /∗ day of football season ∗/
switch (c) {
case ’A’: d = −26; break; /∗ August ∗/
case ’S’: d = 5; break; /∗ thirty days hath September ∗/
case ’O’: d = 35; break; /∗ October ∗/
case ’N’: d = 66; break; /∗ November ∗/
case ’D’: d = 96; break; /∗ December ∗/
case ’J’: d = 127; break; /∗ January ∗/
default: d = 1000;
}
d += gb number (10);
if (d < 0 ∨ d > MAX_DAY) panic(syntax error − 1); /∗ date was clobbered ∗/
today = d;
gb newline (); /∗ now ready to read a non-date line ∗/

}
This code is used in section 21.

§23 GB GAMES ARCS 11

23. ⟨Private functions 23 ⟩ ≡
static Vertex ∗team lookup() /∗ read and decode an abbreviation ∗/
{ register char ∗q = str buf ; /∗ position in str buf ∗/
register long h = 0; /∗ hash code ∗/
register node ∗p; /∗ position in hash list ∗/
while (gb digit (10) < 0) {

∗q = gb char ();
h = (h+ h+ ∗q) % HASH_PRIME;
q++;

}
gb backup(); /∗ prepare to re-scan the digit following the abbreviation ∗/
∗q = ’\0’; /∗ null-terminate the abbreviation just scanned ∗/
for (p = hash block [h]; p; p = p⃗ hash link)

if (strcmp(p⃗ abb , str buf) ≡ 0) return p⃗ vert ;
return Λ; /∗ not found ∗/

}
This code is used in section 7.

24. We retain the convention of GB GRAPH that the arc from v to u appears immediately after a matching
arc from u to v when u < v.

⟨Enter a new edge 24 ⟩ ≡
{ register Arc ∗a;
if (u > v) { register Vertex ∗w;
register long sw ;

w = u; u = v; v = w;
sw = su ; su = sv ; sv = sw ;
ven = HOME + AWAY − ven ;

}
gb new arc(u, v, su);
gb new arc(v, u, sv);
a = u⃗ arcs ; /∗ a pointer to the new arc ∗/
if (v⃗ arcs ̸= a+ 1) panic(impossible + 9); /∗ can’t happen ∗/
a⃗ venue = ven ; (a+ 1)⃗ venue = HOME + AWAY − ven ;
a⃗ date = (a+ 1)⃗ date = today ;

}
This code is used in section 21.

12 INDEX GB GAMES §25

25. Index. As usual, we close with an index that shows where the identifiers of gb games are defined
and used.

a: 24.
abb : 11, 15, 16, 19, 20, 23.
abbr : 4, 5, 20.
alloc fault : 7.
ap : 2, 5, 20.
ap0 : 2, 7.
ap0 weight : 2, 7, 9, 10, 18.
ap1 : 2, 7.
ap1 weight : 2, 7, 9, 10, 18.
Arc: 24.
arcs : 5, 24.
Area: 13.
AWAY: 5, 24.
a0 : 11, 18, 20.
a1 : 11, 18, 20.
bad specs : 9.
c: 22.
complement : 2.
conf : 11, 17, 20.
conf block : 13, 14, 17.
conference : 3, 5, 20.
d: 22.
date : 5, 24.
early data fault : 14.
first day : 2, 7, 9, 10, 21.
found : 17.
games : 1, 2, 3, 6, 7, 8, 13.
gb backup : 21, 23.
gb char : 15, 17, 18, 21, 22, 23.
gb close : 7.
gb digit : 23.
gb eof : 21.
gb free : 7, 14.
gb init rand : 7.
gb linksort : 7, 11, 19.
gb new arc : 24.
gb new graph : 10.
gb newline : 15, 21, 22.
gb number : 18, 21, 22.
gb open : 14.
gb recycle : 7.
gb save string : 17, 20.
gb sorted : 19.
gb string : 15, 17.
gb trouble code : 6, 7, 14.
gb typed alloc : 14.
Graph: 1, 7, 8.
h: 16, 23.
hash block : 13, 14, 16, 23.
hash link : 11, 13, 16, 23.

HASH_PRIME: 13, 14, 16, 23.
HOME: 5, 21, 24.
id : 10.
impossible : 24.
io errors : 7, 14.
j: 8.
k: 8.
key : 11, 18.
last day : 2, 7, 9, 10, 21.
late data fault : 7.
link : 11, 15, 19.
m: 13.
MAX_DAY: 2, 9, 22.
MAX_N: 2, 9, 14, 19.
MAX_WEIGHT: 2, 9.
ma0 : 13, 18.
ma1 : 13, 18.
mu0 : 13, 18.
mu1 : 13, 18.
n: 7.
name : 11, 15, 20.
NEUTRAL: 5, 21.
new graph : 7, 8, 10, 19.
nick : 11, 15, 20.
nickname : 4, 5, 20.
no room : 10, 14.
node: 11, 13, 14, 15, 19, 23.
node block : 13, 14, 15, 19.
node struct: 11.
p: 15, 19, 23.
panic : 6, 7, 9, 10, 14, 15, 17, 18, 21, 22, 24.
panic code : 6.
q: 15, 23.
seed : 2, 7, 10.
sprintf : 10.
str buf : 17, 23.
strcmp : 17, 23.
strcpy : 10.
su : 21, 24.
sv : 21, 24.
sw : 24.
syntax error : 15, 17, 18, 21, 22.
team lookup : 21, 23.
today : 21, 22, 24.
u: 21.
upi : 2, 5, 20.
upi0 : 2, 7.
upi0 weight : 2, 7, 9, 10, 18.
upi1 : 2, 7.
upi1 weight : 2, 7, 9, 10, 18.

§25 GB GAMES INDEX 13

util types : 10.
u0 : 11, 18, 20.
u1 : 11, 18, 20.
v: 19, 21.
ven : 21, 24.
venue : 5, 24.
vert : 11, 20, 23.
Vertex: 11, 19, 21, 23, 24.
vertices : 19.
w: 24.
working storage : 7, 13, 14.

14 NAMES OF THE SECTIONS GB GAMES

⟨Add team p to the graph 20 ⟩ Used in section 19.

⟨Change the current date 22 ⟩ Used in section 21.

⟨Check that the parameters are valid 9 ⟩ Used in section 7.

⟨Determine the n teams to use in the graph 19 ⟩ Used in section 7.

⟨Enter a new edge 24 ⟩ Used in section 21.

⟨Enter p⃗ abb in the hash table 16 ⟩ Used in section 15.

⟨Local variables 8 ⟩ Used in section 7.

⟨Private functions 23 ⟩ Used in section 7.

⟨Private variables 13 ⟩ Used in section 7.

⟨Put the appropriate edges into the graph 21 ⟩ Used in section 7.

⟨Read and store data for team k 15 ⟩ Used in section 14.

⟨Read the conference name for p 17 ⟩ Used in section 15.

⟨Read the first part of games.dat and compute team weights 14 ⟩ Used in section 7.

⟨Read the press poll scores for p and compute p⃗ key 18 ⟩ Used in section 15.

⟨Set up a graph with n vertices 10 ⟩ Used in section 7.

⟨Type declarations 11 ⟩ Used in section 7.

⟨ gb_games.h 1, 5 ⟩

May 19, 2018 at 02:29

GB GAMES
Section Page

Introduction . 1 1
Vertices . 11 6
Arcs . 21 10
Index . 25 12

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

