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1*. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.
Many of the previous implementations in this series—SAT0, SAT3, SAT4, SAT5, and SAT10—were based on

a natural backtracking approach that has come to be known in the SAT community as the DPLL paradigm,
honoring the pioneering work of Davis, Putnam, Logemann, and Loveland. Several decades of experience
with that paradigm have led to an extremely efficient class of programs now called lookahead solvers, which
devote considerable time to choosing the variables on which to branch. The extra work of making that choice
might cost us a factor of a thousand, say, at every branch node; yet we might also decrease the number of
nodes by a factor of a million, thus making a net thousand-fold gain. Somewhat to my surprise, this rosy
prediction (contrary to what I had believed for many years) actually does work in practice: There are many
SAT problems (especially those based on combinatorial tasks, as well as the academic yet appealing cases of
unsatisfiable random 3SAT) for which judicious lookaheads outperform any other known method.

Consequently SAT11 is intended to represent a modern lookahead solver. I’ve based it largely on Marijn
Heule’s MARCH, which has been regularly classed with the world’s best lookahead solvers for the last decade
or so. I expect SAT11 to be the most ambitious program of this series, because it combines many advanced
ideas that I wish to understand and to explain to the readers of TAOCP. On the other hand, I have not
included all of the bells and whistles of MARCH; in particular, I’ve omitted the separate treatment of clause
sets that represent linear equations mod 2, as well as the “limited discrepancy search” technique by which
branches of the search tree are explored in a nonstandard order.
Actually this program is not SAT11 but SAT11K, an extension that handles general clauses; the original

SAT11 limited itself to clauses of length three or less. You might want to read that program first, before
getting into the extra complications of this one. (On the other hand, some aspects of this version are simpler.
So take heart: You can handle SAT11K just fine.) Asterisks indicate differences between SAT11 and SAT11K.
If you have already read SAT10 (or some other program of this series), you might as well skip now past

all the code for the “I/O wrapper,” because you have seen it before.
The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals

separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~␣ are ignored (treated as comments). The output will be ‘~’ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘~x1 ~x2 x3’, in some
order, possibly together with either x4 or ~x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.
The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)
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2*. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
⟨Type definitions 5 ⟩;
⟨Global variables 3* ⟩;
⟨Subroutines 29 ⟩;
main (int argc , char ∗argv [ ])
{
register int au , av , aw , h, i, j, jj , k, kk , l, ll , p, pp , q, qq , r, s, cia , cis , ci ;
register int c, cc , hh , la , lp , ls , ola , ols , tla , tls , tll , sl , su , sv , sw ;
register int t, tt , u, uu , v0 , v, vv , w, ww , x, y, xl , pu , aa , ss , pv , ua , va ;

⟨Process the command line 4* ⟩;
⟨ Initialize everything 8 ⟩;
⟨ Input the clauses 9 ⟩;
if (verbose & show basics ) ⟨Report the successful completion of the input phase 22 ⟩;
⟨Set up the main data structures 37 ⟩;
imems = mems ,mems = 0;
⟨Solve the problem 152* ⟩;

done : if (verbose & show basics )
fprintf (stderr , "Altogether␣"O"llu+"O"llu␣mems,␣"O"llu␣bytes,␣"O"llu␣nodes.\n", imems ,

mems , bytes ,nodes );
}
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3*. The default values of parameters below have been tuned for a broad spectrum of SAT instances, based
on tests by Holger Hoos in 2015.

#define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
#define show gory details 8 /∗ verbose code for more yet ∗/
#define show doubly gory details 16 /∗ verbose code for still more ∗/
#define show unused vars 32 /∗ verbose code to list variables not in solution ∗/
#define show big clauses 64 /∗ verbose code to print all big guys at beginning ∗/
#define show scores 64 /∗ verbose code to show the prelookahead scores ∗/
#define show strong comps 128 /∗ verbose code to show strong components ∗/
#define show looks 256 /∗ verbose code to show the lookahead forest ∗/
⟨Global variables 3* ⟩ ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics + show unused vars ; /∗ level of verbosity ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int print state cutoff = 32 ∗ 80; /∗ don’t print more than this many hists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
FILE ∗out file ; /∗ file for optional output ∗/
char ∗out name ; /∗ its name ∗/
FILE ∗primary file ; /∗ file for optional input ∗/
char ∗primary name ; /∗ its name ∗/
int primary vars ; /∗ the number of primary variables ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ the number of nodes entered ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta ̸= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
uint memk max = memk max default ; /∗ binary log of the maximum size of mem ∗/
float alpha = 0.001; /∗ magic constant for heuristic scores ∗/
float gamm = 0.20; /∗ magic ratio for the clause reduction heuristic ∗/
int theta64 = 25; /∗ the optimization parameter theta, times 64 ∗/
int levelcand = 600; /∗ preselected candidates times levels ∗/
int mincutoff = 30; /∗ don’t cut off fewer than this many candidates ∗/
int max prelook arcs = 5000; /∗ space available for arcs re strong components ∗/
int dl max iter = 1; /∗ maximum iterations of double-look ∗/
float dl rho = 0.9998; /∗ damping factor for the double-look trigger ∗/

See also sections 7*, 24*, 36, 48, 60, 67, 89, 108, 120, 124, 133, 141, and 164*.

This code is used in section 2*.



4 INTRO SAT11K §4

4*. On the command line one can specify any or all of the following options:

• ‘v⟨ integer ⟩’ to enable various levels of verbose output on stderr .
• ‘c⟨positive integer ⟩’ to limit the levels on which clauses are shown.
• ‘h⟨positive integer ⟩’ to adjust the hash table size.
•
• ‘H⟨positive integer ⟩’ to limit the literals whose histories are shown by print state . ‘b⟨positive integer ⟩’ to

adjust the size of the input buffer.
• ‘s⟨ integer ⟩’ to define the seed for any random numbers that are used.
• ‘d⟨ integer ⟩’ to set delta for periodic state reports. (See print state .)
• ‘m⟨positive integer ⟩’ to adjust the maximum memory size. (The binary logarithm is specified; it must be
at most 31.)

• ‘a⟨positive float ⟩’ to adjust the magic constant α in heuristic scores.
• ‘g⟨positive float ⟩’ to adjust the magic ratio γ in the clause reduction heuristic scores clause weight [k].
• ‘t⟨positive integer ⟩’ to adjust the fraction θ = n/64 that triggers clause rearrangement.
• ‘p⟨positive integer ⟩’ to adjust the parameter levelcand , approximating “candidates times levels” during
the preselection phase.

• ‘q⟨positive integer ⟩’ to adjust the parameter mincutoff , the minimum cutoff on the number of candidates
during preselection.

• ‘z⟨positive integer ⟩’ to adjust max prelook arcs , the maximum number of arcs retained when studying
the reduced digraph during preselection.

• ‘i⟨positive integer ⟩’ to adjust dl max iter , the maximum number of iterations allowed during a double-
lookahead.

• ‘r⟨positive float ⟩’ to adjust dl rho , the damping factor for dl trigger .
• ‘x⟨filename ⟩’ to copy the input plus a solution-eliminating clause to the specified file. If the given problem
is satisfiable in more than one way, a different solution can be obtained by inputting that file.

• ‘V⟨filename ⟩’ to input a file that lists the names of all “primary” variables. A nonprimary variable will
not be used for branching unless its value is forced, or unless all of the primary variables have already
been assigned a value.

• ‘T⟨ integer ⟩’ to set timeout : This program will abruptly terminate, when it discovers thatmems > timeout .

⟨Process the command line 4* ⟩ ≡
for (j = argc − 1, k = 0; j; j−−)
switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&verbose )− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max )− 1); break;
case ’H’: k |= (sscanf (argv [j] + 1, ""O"d",&print state cutoff )− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, ""O"d",&hbits )− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, ""O"d",&buf size )− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed )− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta )− 1); thresh = delta ; break;
case ’m’: k |= (sscanf (argv [j] + 1, ""O"d",&memk max )− 1); break;
case ’a’: k |= (sscanf (argv [j] + 1, ""O"f",&alpha )− 1); break;
case ’g’: k |= (sscanf (argv [j] + 1, ""O"f",&gamm )− 1); break;
case ’t’: k |= (sscanf (argv [j] + 1, ""O"d",&theta64 )− 1); break;
case ’p’: k |= (sscanf (argv [j] + 1, ""O"d",&levelcand )− 1); break;
case ’q’: k |= (sscanf (argv [j] + 1, ""O"d",&mincutoff )− 1); break;
case ’z’: k |= (sscanf (argv [j] + 1, ""O"d",&max prelook arcs )− 1); break;
case ’i’: k |= (sscanf (argv [j] + 1, ""O"d",&dl max iter )− 1); break;
case ’r’: k |= (sscanf (argv [j] + 1, ""O"f",&dl rho)− 1); break;
case ’x’: out name = argv [j] + 1, out file = fopen (out name , "w");

if (¬out file ) fprintf (stderr , "I␣can’t␣open␣file␣‘"O"s’␣for␣output!\n", out name );
break;

case ’V’: primary name = argv [j] + 1, primary file = fopen (primary name , "r");
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if (¬primary file ) fprintf (stderr , "I␣can’t␣open␣file␣‘"O"s’␣for␣input!\n", primary name );
break;

case ’T’: k |= (sscanf (argv [j] + 1, ""O"lld",&timeout )− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0 ∨memk max < 2 ∨memk max > 31 ∨ alpha ≤ 0.0 ∨ gamm ≤
0 ∨ theta64 < 0 ∨ levelcand ≤ 0 ∨mincutoff ≤ 0 ∨max prelook arcs ≤ 0 ∨ dl max iter ≤ 0) {

fprintf (stderr , "Usage:␣"O"s␣[v<n>]␣[c<n>]␣[h<n>]␣[b<n>]␣[s<n>]␣[d<n>]␣[m<n>]␣", argv [0]);
fprintf (stderr , "␣[H<n>]␣[g<f>]␣[a<f>]␣[t<n>]␣[p<n>]␣[q<n]␣[z<n>]");
fprintf (stderr , "␣[i<n>]␣[r<f>]␣[x<foo>]␣[V<foo>]␣[T<n>]␣<␣foo.sat\n");
exit (−1);

}
This code is used in section 2*.
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5. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines into all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.
In these temporary tables, each variable is represented by four things: its unique name; its serial number;

the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/
⟨Type definitions 5 ⟩ ≡

typedef union {
char ch8 [8];
uint u2 [2];
long long lng ;

} octa;
typedef struct tmp var struct {
octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/

} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk ];

} vchunk;

See also sections 6, 26, 27*, 28, 34, 35, 88, 107, and 119.

This code is used in section 2*.

6. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/
⟨Type definitions 5 ⟩ +≡

typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk ];

} chunk;
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7*. ⟨Global variables 3* ⟩ +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
vchunk ∗last vchunk ; /∗ another pointer for vchunk manipulation ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/
ullng bclauses ; /∗ how many clauses are big (have more than two literals)? ∗/
ullng bcells ; /∗ how many occurrences of literals in big clauses? ∗/
int non clause ; /∗ is the current clause ignorable? ∗/

8. ⟨ Initialize everything 8 ⟩ ≡
gb init rand (random seed );
buf = (char ∗) malloc(buf size ∗ sizeof (char));
if (¬buf ) {
fprintf (stderr , "Couldn’t␣allocate␣the␣input␣buffer␣(buf_size="O"d)!\n", buf size );
exit (−2);

}
hash = (tmp var ∗∗) malloc(sizeof (tmp var) ≪ hbits );
if (¬hash ) {
fprintf (stderr , "Couldn’t␣allocate␣"O"d␣hash␣list␣heads␣(hbits="O"d)!\n", 1 ≪ hbits , hbits );
exit (−3);

}
for (h = 0; h < 1 ≪ hbits ; h++) hash [h] = Λ;

See also section 15.

This code is used in section 2*.
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9. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)
All the hashing takes place at the very beginning, and the hash tables are actually recycled before any

SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

⟨ Input the clauses 9 ⟩ ≡
if (primary file ) ⟨ Input the primary variables 10 ⟩;
while (1) {
if (¬fgets (buf , buf size , stdin )) break;
clauses++;
if (buf [strlen (buf )− 1] ̸= ’\n’) {
fprintf (stderr , "The␣clause␣on␣line␣"O"lld␣("O".20s...)␣is␣too␣long␣for␣me;\n", clauses ,

buf );
fprintf (stderr , "␣my␣buf_size␣is␣only␣"O"d!\n", buf size );
fprintf (stderr , "Please␣use␣the␣command−line␣option␣b<newsize>.\n");
exit (−4);

}
⟨ Input the clause in buf 11* ⟩;

}
if (¬primary file ) primary vars = vars ;
if ((vars ≫ hbits ) ≥ 10) {
fprintf (stderr , "There␣are␣"O"lld␣variables␣but␣only␣"O"d␣hash␣tables;\n", vars , 1 ≪ hbits );
while ((vars ≫ hbits ) ≥ 10) hbits++;
fprintf (stderr , "␣maybe␣you␣should␣use␣command−line␣option␣h"O"d?\n", hbits );

}
clauses −= nullclauses ;
if (clauses ≡ 0) {
fprintf (stderr , "No␣clauses␣were␣input!\n");
exit (−77);

}
if (vars ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣variables!\n", vars );
exit (−664);

}
if (clauses ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣clauses!\n", clauses );
exit (−665);

}
if (cells ≥ #100000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣"O"llu␣occurrences␣of␣literals!\n", cells );
exit (−666);

}
This code is used in section 2*.
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10. We input from primary file just as if it were the standard input file, except that all “clauses” are
discarded. (Line numbers in error messages are zero.) The effect is to place the primary variables first in
the list of all variables: A variable is primary if and only if its index is ≤ primary vars .

⟨ Input the primary variables 10 ⟩ ≡
{
while (1) {

if (¬fgets (buf , buf size , primary file )) break;
if (buf [strlen (buf )− 1] ̸= ’\n’) {

fprintf (stderr , "The␣clause␣on␣line␣"O"lld␣("O".20s...)␣is␣too␣long␣for␣me;\n",
clauses , buf );

fprintf (stderr , "␣my␣buf_size␣is␣only␣"O"d!\n", buf size );
fprintf (stderr , "Please␣use␣the␣command−line␣option␣b<newsize>.\n");
exit (−4);

}
⟨ Input the clause in buf 11* ⟩;
⟨Remove all variables of the current clause 19 ⟩;

}
cells = nullclauses = 0;
primary vars = vars ;
if (verbose & show basics )
fprintf (stderr , "("O"d␣primary␣variables␣read␣from␣"O"s)\n", primary vars , primary name );

}
This code is used in section 9.

11*. ⟨ Input the clause in buf 11* ⟩ ≡
for (j = k = non clause = 0; ¬non clause ; ) {
while (buf [j] ≡ ’␣’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’␣’ ∨ buf [j] > ’~’) {

fprintf (stderr , "Illegal␣character␣(code␣#"O"x)␣in␣the␣clause␣on␣line␣"O"lld!\n",
buf [j], clauses );

exit (−5);
}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩;

}
if (k ≡ 0 ∧ ¬non clause ) {
fprintf (stderr , "(Empty␣line␣"O"lld␣is␣being␣ignored)\n", clauses );
nullclauses++; /∗ strictly speaking it would be unsatisfiable ∗/

}
if (non clause ) ⟨Remove all variables of the current clause 19 ⟩
else {
if (k ≥ 3) bclauses++, bcells += k;
if (k > max clause ) max clause = k;

}
cells += k;

This code is used in sections 9 and 10.
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12. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)
⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩ ≡

{
register tmp var ∗p;
if (cur tmp var ≡ bad tmp var ) ⟨ Install a new vchunk 13 ⟩;
⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩;
if (¬non clause ) {

⟨Find cur tmp var⃗name in the hash table at p 17 ⟩;
if (clauses ∧ (p⃗ stamp ≡ clauses ∨ p⃗ stamp ≡ −clauses )) ⟨Handle a duplicate literal 18 ⟩
else {
p⃗ stamp = (i ? −clauses : clauses );
if (cur cell ≡ bad cell ) ⟨ Install a new chunk 14 ⟩;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

}
This code is used in section 11*.

13. ⟨ Install a new vchunk 13 ⟩ ≡
{
register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc(sizeof (vchunk));
if (¬new vchunk ) {

fprintf (stderr , "Can’t␣allocate␣a␣new␣vchunk!\n");
exit (−6);

}
new vchunk⃗prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk⃗var [0];
bad tmp var = &new vchunk⃗var [vars per vchunk ];

}
This code is used in section 12.

14. ⟨ Install a new chunk 14 ⟩ ≡
{
register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc(sizeof (chunk));
if (¬new chunk ) {
fprintf (stderr , "Can’t␣allocate␣a␣new␣chunk!\n");
exit (−7);

}
new chunk⃗prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk⃗cell [0];
bad cell = &new chunk⃗cell [cells per chunk ];

}
This code is used in section 12.
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15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

⟨ Initialize everything 8 ⟩ +≡
for (j = 92; j; j−−)
for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ( );

16. ⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩ ≡
cur tmp var⃗name .lng = 0;
for (h = l = 0; buf [j + l] > ’␣’ ∧ buf [j + l] ≤ ’~’; l++) {
if (l > 7) {
fprintf (stderr , "Variable␣name␣"O".9s...␣in␣the␣clause␣on␣line␣"O"lld␣is␣too␣long!\n",

buf + j, clauses );
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var⃗name .ch8 [l] = buf [j + l];

}
if (l ≡ 0) non clause = 1; /∗ ‘~’ by itself is like ‘true’ ∗/
else j += l, h &= (1 ≪ hbits )− 1;

This code is used in section 12.

17. ⟨Find cur tmp var⃗name in the hash table at p 17 ⟩ ≡
for (p = hash [h]; p; p = p⃗ next )
if (p⃗ name .lng ≡ cur tmp var⃗name .lng ) break;

if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p⃗ next = hash [h], hash [h] = p;
p⃗ serial = vars++;
p⃗ stamp = 0;

}
This code is used in section 12.

18. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

⟨Handle a duplicate literal 18 ⟩ ≡
{
if ((p⃗ stamp > 0) ≡ (i > 0)) non clause = 1; /∗ tautology ∗/

}
This code is used in section 12.
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19. An input line that begins with ‘~␣’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

⟨Remove all variables of the current clause 19 ⟩ ≡
{
while (k) {

⟨Move cur cell backward to the previous cell 20 ⟩;
k−−;

}
if (non clause ∧ ((buf [0] ̸= ’~’) ∨ (buf [1] ̸= ’␣’)))

fprintf (stderr , "(The␣clause␣on␣line␣"O"lld␣is␣always␣satisfied)\n", clauses );
nullclauses++;

}
This code is used in sections 10 and 11*.

20. ⟨Move cur cell backward to the previous cell 20 ⟩ ≡
if (cur cell > &cur chunk⃗cell [0]) cur cell −−;
else {
register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk⃗prev ; free (old chunk );
bad cell = &cur chunk⃗cell [cells per chunk ];
cur cell = bad cell − 1;

}
This code is used in sections 19 and 41*.

21. Here I must omit ‘free (old vchunk )’ from the code that’s usually in this section, because the variable
data will be used later.

⟨Move cur tmp var backward to the previous temporary variable 21 ⟩ ≡
if (cur tmp var > &cur vchunk⃗var [0]) cur tmp var −−;
else {
register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk⃗prev ; /∗ and don’t free (old vchunk ) ∗/
bad tmp var = &cur vchunk⃗var [vars per vchunk ];
cur tmp var = bad tmp var − 1;

}
This code is used in section 46.

22. ⟨Report the successful completion of the input phase 22 ⟩ ≡
fprintf (stderr , "("O"lld␣variables,␣"O"lld␣clauses,␣"O"llu␣literals␣successfully␣read)\n",

vars , clauses , cells );

This code is used in section 2*.
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23. SAT solving, version 11. A lookahead solver explores a binary tree of possibilities by choosing,
at every decision node, a variable x for which the node’s subtrees correspond to asserting x or x̄. Several
more-or-less independent activities are part of this process:

(1) Preselection. At each decision node we choose a subset P of the unassigned variables, based on our
best guess as to which of them might be good candidates for further exploration.

(2) Selection. We look ahead at the immediate consequences of asserting the truth and falsity of each
variable in P . Then we choose the variable that appears to reduce the problem most efficiently.

(3) Propagation. We update the current state of the problem by incorporating all consequences of a new
assertion.

(4) Backtracking. When a contradiction arises in some branch, we must undo the effects of propagation
and move to an unexplored branch of the tree.

Each of these activities, except thankfully the last, involves many individual steps.
In some sense this program represents an attitude: We’re not afraid to throw code at the problem.
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24*. Quite a few cooperating data structures are needed to do all these things at high speed. I shall therefore
try to summarize the main ones here.
First, we need to represent the fact that variable x is true, false, or unknown. In fact, we must also

deal with intermediate stages by which x is known with various degrees of certainty, based on tentative
assumptions that we’ve made during the lookahead or propagation process. Every variable therefore has
an integer stamp, which is even if x is true, odd if x is false, and relatively large if the value is relatively
certain. Setting the stamp to 0 makes x absolutely unknown; setting the stamp to the highest possible values
real truth or real truth +1 makes it absolutely true or false. Setting the stamp to an intermediate value like
100 makes x true when the “current stamp” cs is 2, 4, . . . , 100, but unknown when cs > 100. (The value
of cs is always even, and it never exceeds known .)
Second, we need quick access to the consequences of binary clauses. A binary clause l ∨ l′ is equivalent

to two direct implications l̄ → l′ and l̄′ → l, and the set of all such implications forms a digraph called the
implication graph. The bimp data structure makes it easy to find all literals that are directly implied by
any given literal. (And since l̄ → l′ if and only if l̄′ → l, it’s equally easy to find all literals that directly
imply any given literal.) New binary implications are learned and added to bimp as computation proceeds,
and they are stored sequentially in memory; therefore the individual lists are allocated dynamically, within
a large array called mem , using the “buddy system” (Algorithm 2.5R).

Third, we need a good way to manipulate the “big clauses,” namely the clauses that contain three or more
literals. Two arrays called cinx and kinx , which are indexes into two larger arrays called cmem and kmem ,
govern this aspect of the problem: cinx [c] tells where the literals of clause c are listed in cmem , while kinx [l]
tells where the clauses that contain a given literal l are listed in kmem . All four of these arrays are allocated
once and for all before the main computation begins.
Fourth, there’s a sequential list freevar of all variables not currently assigned, and an inverse list freeloc

to tell where a particular variable appears in freevar .
Fifth, sixth, etc., there are a bunch of more conventional data structures: Attributes of literal l appear

in lmem [l]; attributes of variable x appear in vmem [x]. The rstack holds the names of literals in the order
they have been (tentatively) set. The istack holds the names of variables whose bimp entries have grown,
together with the value needed to ungrow them when we undo a decision. The nstack contains information
about nodes of the decision tree that have led to the current state. Later we will define a number of special
data structures for use in parts of this program that are essentially self-contained.

⟨Global variables 3* ⟩ +≡
uint ∗stamp ; /∗ the current levels of truth, falsity, and uncertainty ∗/
uint ∗mem ; /∗ master array of buddy-allocated blocks for bimp lists ∗/
bdata ∗bimp ; /∗ indexes into mem for lists of binary implications ∗/
uint ∗cmem , ∗kmem ; /∗ master arrays for cinx and kinx data ∗/
tdata ∗cinx , ∗kinx ; /∗ indexes into cmem and kmem for the big clause info ∗/
tpair ∗bstack ; /∗ holding place for big clauses that become binary or unary ∗/
int bptr ; /∗ the number of elements used in bstack ∗/
int max use ; /∗ the maximum number of times any literal occurs ∗/
tpair ∗tmem ; /∗ master array of blocks for timp lists ∗/
tdata ∗timp ; /∗ indexes into tmem for lists of ternary implications ∗/
uint ∗freevar , ∗freeloc ; /∗ perm of the variables from free to assigned ∗/
int freevars ; /∗ how many of the variables are still free (unassigned)? ∗/
uint ∗rstack ; /∗ stack and queue for backtracking and unit propagation ∗/
int rptr ; /∗ the number of elements used in rstack ∗/
idata ∗istack ; /∗ bimp sizes to be undone if necessary ∗/
int iptr ; /∗ the number of elements used in istack ∗/
int iptr max ; /∗ largest iptr currently allocated in virtual memory ∗/
ndata ∗nstack ; /∗ node information ∗/
int level ; /∗ current depth in the decision tree ∗/
literal ∗lmem ; /∗ attributes of literals ∗/
variable ∗vmem ; /∗ attributes of variables ∗/
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25*. The variables are numbered 1, 2, . . . , n, and the literals corresponding to variable x are 2x and 2x+1
(namely x and x̄). Thus the variable that corresponds to literal l is l ≫ 1, and the complement of literal l is
l ⊕ 1. (Previous programs of this series started the numbering at 0, not 1, in accord with Dijkstra’s famous
dictum. But we shall find it convenient to reserve the value 0 for use as a sentinel.)
Some arrays (like stamp and freevar ) are indexed by variable numbers, while others (like bimp and kinx )

are indexed by literal numbers. In order to reduce the chance of confusion between the two numbering
schemes, variables in the code below will generally be represented by the letters x, y, or z; literals will
generally be represented by l, u, v, or w.

#define thevar (l) ((l) ≫ 1) /∗ the variable that corresponds to l ∗/
#define bar (l) ((l)⊕ 1) /∗ the complement of l ∗/
#define poslit (x) ((x) ≪ 1) /∗ the literal x ∗/
#define neglit (x) (((x) ≪ 1) + 1) /∗ the literal x̄ ∗/

26. An entry in the bimp table has four parts: addr is the address in mem where the list of implications
begins; size is the current length of that list; alloc is the number of memory positions currently available at
the given address; and alloc always equals 2k, where k is the fourth field. (Thus we always have size ≤ alloc .
The value of k is always at least 2, hence alloc is always at least 4. As the computation proceeds, alloc
might increase, but it never will decrease.)
When mems are counted, we assume that addr and size are fetched or stored together; hence we can

access them both at the cost of just one mem. Similarly, alloc and k are assumed to be in the same octabyte
of memory.
An entry in the istack has two parts: lit is the literal l whose bimp entry is to be restored; size is the

amount to be placed in bimp [l].size .

⟨Type definitions 5 ⟩ +≡
typedef struct bdata struct {
uint addr ; /∗ starting place of a sequential list in mem ∗/
uint size ; /∗ its current length ∗/
uint alloc ; /∗ maximum length before reallocation is necessary ∗/
uint k; /∗ lg alloc ∗/

} bdata;
typedef struct idata struct {
uint lit ; /∗ the l whose size in bimp was changed ∗/
uint size ; /∗ its previous size ∗/

} idata;
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27*. An entry in cinx has two parts: addr is the address in cmem where the list of literals for a given clause
begins; size is initially the length of that list. When literals of a clause become true or false, the size field
is adjusted in a somewhat tricky way, explained below within the sanity routine. The literals of the input
clauses are loaded backwards into cmem , so that we have cinx [c].addr +cinx [c].size = cinx [c−1].addr when
computation begins.
An entry in kinx is, likewise, bipartite: addr is the address in kmem where the list of clauses numbers for

a given literal begins, and size is the current length of that list. If l is a free literal (namely a literal whose
value has not been assigned true or false), kinx [l].size will be the number of clauses that contain l and are
not yet satisfied.
When a big clause is reduced to binary, because all but two of its literals have become false while none

have become true, we will place it briefly on the bstack , whose entries are pairs of literals.

⟨Type definitions 5 ⟩ +≡
typedef struct tdata struct {
uint addr ; /∗ starting place of a sequential list in mem ∗/
uint size ; /∗ its current length ∗/

} tdata; /∗ one octabyte ∗/
typedef struct tpair struct {
uint u, v; /∗ a pair of literals ∗/

} tpair; /∗ one octabyte ∗/

28. An entry in nstack has the following fields: decision records the literal whose truth is being tentatively
asserted; branch is 0 in the first branch, or 1 if that branch failed; rptr and iptr record the initial values of
those stack pointers when the node was initialized; lptr records the initial value of rptr when lookahead for
the next level began.

⟨Type definitions 5 ⟩ +≡
typedef struct ndata struct {
uint decision ; /∗ the literal chosen at this branch ∗/
int branch ; /∗ did we try and fail to set it the other way? ∗/
int rptr , iptr , lptr ; /∗ initial values of stack pointers ∗/

} ndata;

29. Here is a subroutine that prints the binary implicant data for a given literal. (Used only when
debugging.)

⟨Subroutines 29 ⟩ ≡
void print bimp(int l)
{
register uint la , ls ;

printf (""O"s"O".8s␣−>", litname (l));
for (la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) printf ("␣"O"s"O".8s", litname (mem [la ]));
printf ("\n");

}
See also sections 30*, 31*, 33, 50, 61, and 154.

This code is used in section 2*.
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30*. Similarly, the current data for big clauses gives useful diagnostic info.

⟨Subroutines 29 ⟩ +≡
void print clause (int c)
{
register uint la , ls ;

printf (""O"d:", c);
for (la = cinx [c].addr ; la < cinx [c− 1].addr ; la++) printf ("␣"O"s"O".8s"O"s",

litname (cmem [la ]), isfree (cmem [la ]) ? "" : iscontrary (cmem [la ]) ? "−" : "+");
printf ("␣("O"d)\n", cinx [c].size );

}
void print kinx (int l)
{
register uint la , ls ;

printf ("kinx["O"s"O".8s]:", litname (l));
for (la = kinx [l].addr , ls = kinx [l].size ; ls ; la++, ls−−) printf ("␣"O"d", kmem [la ]);
printf ("\n");

}
void print full kinx (int l)
{
register uint la , k;

printf ("kinx["O"s"O".8s]:", litname (l));
for (la = kinx [l].addr , k = 0; k < kinx [l].size ; k++) printf ("␣"O"d", kmem [la + k]);
if (la + k ̸= kinx [l − 1].addr ) {

printf ("␣#"); /∗ show also the inactive clauses ∗/
for ( ; la + k < kinx [l − 1].addr ; k++) printf ("␣"O"d", kmem [la + k]);

}
printf ("\n");

}

31*. Speaking of debugging, here’s a routine to check if the redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/
⟨Subroutines 29 ⟩ +≡
void sanity (void)
{
register int c, j, k, l, la , ls , p, q, u, v;

for (k = 0; k < vars ; k++) {
if (freevar [freeloc [k + 1]] ̸= k + 1) fprintf (stderr , "freeloc["O"d]␣is␣wrong!\n", k + 1);
if (freeloc [freevar [k]] ̸= k) fprintf (stderr , "freevar["O"d]␣is␣wrong!\n", k);

}
for (k = 0; k < rptr ; k++) {
l = rstack [k];
if (freeloc [thevar (l)] < freevars ) fprintf (stderr , "literal␣"O"d␣on␣rstack␣is␣free!\n", l);

}
if (rptr + freevars ̸= vars )
fprintf (stderr , "rptr="O"d,␣freevars="O"d,␣vars="O"lld\n", rptr , freevars , vars );

⟨Check the sanity of bimp and mem 49 ⟩;
⟨Check the sanity of cinx and cmem , kinx and kmem 32* ⟩;

}
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32*. A big clause c = l1 ∨ · · · ∨ lk for k ≥ 3 begins unsatisfied, and its initial size is k. Later, after j of its
literals have become false but none of them have yet become true, the size will be k− j, as long as k− j ≥ 2.
(The nonfalse literals needn’t be adjacent in memory at such times; we only need to know that the residual
clause is still big.) But when j reaches k − 2, or when one of the literals becomes true, clause c becomes
inactive: It disappears from the kinx tables of all free literals. Henceforth the elements of c will not be
examined again in cmem until we undo the setting of the literal that inactivated c.

Thus a clause is inactive if and only if it has been satisfied (contains a true literal) or has become binary
(has at most two nonfalse literals). The program here marks inactive clauses by temporarily complementing
their size fields, so that we can validate the kinx data.

⟨Check the sanity of cinx and cmem , kinx and kmem 32* ⟩ ≡
for (c = bclauses ; c; c−−) {
for (la = cinx [c].addr , k = ls = cinx [c− 1].addr − la , j = 0; ls ; la++, ls−−) {

l = cmem [la ];
if (isfree (l)) continue; /∗ neither true nor false ∗/
if (iscontrary (l)) j++; /∗ false ∗/
else goto inactive ; /∗ true ∗/

}
if (j ≥ k − 2) {
if (cinx [c].size ̸= 2) fprintf (stderr , "ex−big␣clause␣"O"d␣has␣size␣"O"d!\n", c, cinx [c].size );
goto inactive ;

}
if (cinx [c].size ̸= k − j)
fprintf (stderr , "big␣clause␣"O"d␣has␣size␣"O"d␣not␣"O"d\n", c, cinx [c].size , k − j);

continue;
inactive : cinx [c].size = ∼cinx [c].size ;
}
for (l = 2; l < badlit ; l++)
if (isfree (l)) {

for (la = kinx [l].addr , ls = kinx [l].size ; ls ; la++, ls−−) {
c = kmem [la ];
if ((int) cinx [c].size < 0)
fprintf (stderr , "kinx["O"s"O".8s]␣includes␣active␣clause␣"O"d!\n", litname (l), c);

}
for ( ; la < kinx [l − 1].addr ; la++) {
c = kmem [la ];
if ((int) cinx [c].size ≥ 0)
fprintf (stderr , "kinx["O"s"O".8s]␣omits␣active␣clause␣"O"d!\n", litname (l), c);

}
}

for (c = bclauses ; c; c−−)
if ((int) cinx [c].size < 0) cinx [c].size = ∼cinx [c].size ;

This code is used in section 31*.
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33. In long runs it’s helpful to know how far we’ve gotten. A numeric code summarizes each decision
made so far: 0 or 1 means that we’re trying to set a variable true or false, on the first branch of a node
(“branch 0”); 2 or 3 is similar, but on the second branch (“branch 1”); 4 or 5 is similar, but when the decision
was forced by the decision at the previous branch node; 6 or 7 is similar, but when the decision was found
to be forced while looking ahead for the next literal on which to branch.

⟨Subroutines 29 ⟩ +≡
void print state (int lev )
{
register int k, r;

fprintf (stderr , "␣after␣"O"lld␣mems:",mems );
for (k = r = 0; k < lev ; k++) {
for ( ; r < nstack [k].rptr ; r++) fprintf (stderr , ""O"c", ’6’ + (rstack [r] & 1));
if (nstack [k].branch < 0) fprintf (stderr , "|");
else fprintf (stderr , ""O"c", ’0’ + (rstack [r++] & 1) + (nstack [k].branch ≪ 1));
for ( ; r < nstack [k + 1].lptr ; r++) fprintf (stderr , ""O"c", ’4’ + (rstack [r] & 1));
if (k ≥ print state cutoff ) {
fprintf (stderr , "..."); break;

}
}
fprintf (stderr , "\n");
fflush (stderr );

}

34. Each literal has an entry in lmem , containing many fields. We will introduce them from time to time
as we use them.

⟨Type definitions 5 ⟩ +≡
typedef struct lit struct {
int rank ; /∗ order of appearance in Tarjan’s algorithm ∗/
int link ; /∗ pointer to another literal ∗/
int untagged ; /∗ progress record in Tarjan’s algorithm ∗/
int min ; /∗ magically important data for Tarjan’s algorithm ∗/
int parent ; /∗ predecessor in Tarjan’s algorithm ∗/
int vcomp ; /∗ component representation in Tarjan’s algorithm ∗/
int arcs ; /∗ pointer to the first successor entry in the cand arc array ∗/
uint bstamp ; /∗ stamped with bstamp when processing new binaries ∗/
uint dl fail ; /∗ stamped with istamp when doublelook didn’t force this ∗/
uint istamp ; /∗ stamped with istamp when making an entry for istack ∗/
float wnb ; /∗ total weighted new binaries, including implied literals ∗/
uint filler ; /∗ extra space to fill six octabytes ∗/

} literal;

35. Similarly, each variable has an entry in vmem , where three fields appear.

#define litname (l) (l) & 1 ? "~" : "", vmem [thevar (l)].name .ch8 /∗ used in printouts ∗/
⟨Type definitions 5 ⟩ +≡

typedef struct var struct {
octa name ; /∗ the variable’s symbolic name ∗/
int pfx , len ; /∗ prefix of its first useful appearance in the search tree ∗/

} variable;
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36. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks. The code below is, of course, similar to what has worked
in previous programs of this series.

⟨Global variables 3* ⟩ +≡
uint lits ; /∗ how many literals are present? ∗/
uint badlit ; /∗ one more than the highest literal number ∗/

37. ⟨Set up the main data structures 37 ⟩ ≡
lits = vars ≪ 1, badlit = lits + 2;
last vchunk = cur vchunk ;
⟨Allocate the main arrays 38* ⟩;
⟨Copy all the temporary variable nodes to the vmem array in proper format 46 ⟩;
⟨Copy all the temporary cells to the bimp , mem , cinx , cmem , kinx , and kmem arrays in proper

format 40* ⟩;
⟨Check consistency 47 ⟩;
⟨Allocate special arrays 58 ⟩;

This code is used in section 2*.
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38*. We randomize the initial order of freevars , so that different seeds can produce different results (for
instance on satisfiable problems).

⟨Allocate the main arrays 38* ⟩ ≡
stamp = (uint ∗) malloc((vars + 1) ∗ sizeof (uint));
if (¬stamp) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣stamp␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (uint);
bimp = (bdata ∗) malloc(badlit ∗ sizeof (bdata));
if (¬bimp) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣bimp␣array!\n");
exit (−10);

}
bytes += badlit ∗ sizeof (bdata);
⟨ Initialize mem with empty bimp lists 57 ⟩;
cinx = (tdata ∗) malloc((bclauses + 1) ∗ sizeof (tdata));
if (¬cinx ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cinx␣array!\n");
exit (−10);

}
bytes += (bclauses + 1) ∗ sizeof (tdata);
cmem = (uint ∗) malloc(bcells ∗ sizeof (uint));
if (¬cmem ) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cmem␣array!\n");
exit (−10);

}
kinx = (tdata ∗) malloc(badlit ∗ sizeof (tdata));
if (¬kinx ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cmem␣array!\n");
exit (−10);

}
bytes += badlit ∗ sizeof (tdata);
kmem = (uint ∗) malloc(bcells ∗ sizeof (uint));
if (¬kmem ) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣kmem␣array!\n");
exit (−10);

}
bytes += bcells ∗ sizeof (uint);
freevar = (uint ∗) malloc(vars ∗ sizeof (uint));
if (¬freevar ) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣freevar␣array!\n");
exit (−10);

}
bytes += vars ∗ sizeof (uint);
freeloc = (uint ∗) malloc((vars + 1) ∗ sizeof (uint));
if (¬freeloc) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣freeloc␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (uint);
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for (k = 0; k < vars ; k++) {
mems += 4, j = gb unif rand (k + 1);
if (j ̸= k) {
o, i = freevar [j];
oo , freevar [k] = i, freeloc [i] = k;
oo , freevar [j] = k + 1, freeloc [k + 1] = j;

} else oo , freevar [k] = k + 1, freeloc [k + 1] = k;
}
freevars = vars ;

See also section 39.

This code is used in section 37.

39. Although the rstack is used rather heavily, for breadth-first searches, a literal and its complement
never both appear. Therefore the total size of the rstack should never exceed the number of variables.

⟨Allocate the main arrays 38* ⟩ +≡
rstack = (uint ∗) malloc((vars + 1) ∗ sizeof (uint));
if (¬rstack ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣rstack␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (uint);
nstack = (ndata ∗) malloc((vars + 1) ∗ sizeof (ndata));
if (¬nstack ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣nstack␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (ndata);
lmem = (literal ∗) malloc(badlit ∗ sizeof (literal));
if (¬lmem ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣lmem␣array!\n");
exit (−10);

}
bytes += badlit ∗ sizeof (literal);
for (l = 2; l < badlit ; l++) oo , lmem [l].dl fail = lmem [l].bstamp = lmem [l].istamp = 0;

vmem = (variable ∗) malloc((vars + 1) ∗ sizeof (variable));
if (¬vmem ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣vmem␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (variable);
forcedlit = (uint ∗) malloc(vars ∗ sizeof (uint));
if (¬forcedlit ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣forcedlit␣array!\n");
exit (−10);

}
bytes += vars ∗ sizeof (uint);
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40*. ⟨Copy all the temporary cells to the bimp , mem , cinx , cmem , kinx , and kmem arrays in proper
format 40* ⟩ ≡

forcedlits = 0, cs = proto truth ; /∗ prepare for possible unary clauses ∗/
for (l = 2; l < badlit ; l++) o, kinx [l].addr = kinx [l].size = 0; /∗ clear the counts ∗/
for (c = clauses , k = 0, cc = bclauses ; c; c−−) {
la = k;
⟨ Insert the cells for the literals of clause c 41* ⟩;

}
cinx [0].addr = k;
if (k ̸= bcells ∨ cc) confusion ("cmem");
⟨Build kinx and kmem from the stored big clauses 44* ⟩;
if (out file ) fflush (out file ); /∗ complete the copy of input clauses ∗/

This code is used in section 37.

41*. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

⟨ Insert the cells for the literals of clause c 41* ⟩ ≡
for (i = j = 0; i < 2; ) {
⟨Move cur cell backward to the previous cell 20 ⟩;
i = hack out (∗cur cell );
p = hack clean (∗cur cell )⃗ serial ;
p += p+ (i& 1);
o, cmem [k++] = p+ 2, j++;
oo , kinx [p+ 2].size++;

}
if (out file ) {
for (jj = 0; jj < j; jj ++) fprintf (out file , "␣"O"s"O".8s", litname (cmem [la + jj ]));
fprintf (out file , "\n");

}
if (j < 3) { /∗ not big ∗/
k = la , u = cmem [la ];
oo , kinx [u].size−−;
if (j ≡ 2) {
oo , v = cmem [la + 1], kinx [v].size−−;
⟨Store a binary clause in bimp 43 ⟩;

} else ⟨Store a unary clause in forcedlit 42* ⟩;
} else o, cinx [cc ].addr = la , cinx [cc ].size = k − la , cc−−;

This code is used in section 40*.



24 INITIALIZING THE REAL DATA STRUCTURES SAT11K §42

42*. Unary clauses in the input might be repeated or contradictory. Thus we must be careful not to overstep
the bounds of the forcedlit array. The addr fields in kinx are borrowed here, temporarily, so that no variable
is forced twice.

⟨Store a unary clause in forcedlit 42* ⟩ ≡
{
if (o, kinx [u].addr ≡ 0) {

if (o, kinx [bar (u)].addr ) {
if (verbose & show choices ) fprintf (stderr ,

"Unary␣clause␣"O"d␣contradicts␣unary␣clause␣"O"d\n", c, kinx [bar (u)].addr );
goto unsat ;

}
o, kinx [u].addr = c;
o, forcedlit [forcedlits++] = u;

}
}

This code is used in section 41*.

43. ⟨Store a binary clause in bimp 43 ⟩ ≡
{
o, la = bimp [bar (u)].addr , ls = bimp [bar (u)].size ;
if (o, ls ≡ bimp [bar (u)].alloc) resize (bar (u)), o, la = bimp [bar (u)].addr ;
oo ,mem [la + ls ] = v, bimp [bar (u)].size = ls + 1;
o, la = bimp [bar (v)].addr , ls = bimp [bar (v)].size ;
if (o, ls ≡ bimp [bar (v)].alloc) resize (bar (v)), o, la = bimp [bar (v)].addr ;
oo ,mem [la + ls ] = u, bimp [bar (v)].size = ls + 1;

}
This code is used in section 41*.

44*. ⟨Build kinx and kmem from the stored big clauses 44* ⟩ ≡
max use = 0;
for (j = 0, l = badlit − 1; l ≥ 2; l−−) {
oo , kinx [l].addr = j, jj = kinx [l].size , j += jj , kinx [l].size = 0;
if (jj > max use ) max use = jj ;

}
o, kinx [l].addr = j; /∗ we’ll have kinx [l].addr + kinx [l].size = kinx [l − 1].addr ∗/
if (j ̸= bcells ) confusion ("kinx1");
for (c = bclauses , j = 0; c; c−−) {
for (o, k = cinx [c].size ; k; k−−) {
o, u = cmem [j++];
o, la = kinx [u].addr , ls = kinx [u].size ;
o, kmem [la + ls ] = c;
o, kinx [u].size = ls + 1;

}
}
if (j ̸= bcells ) confusion ("kinx2");
⟨Allocate bstack 45* ⟩;

This code is used in section 40*.
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45*. ⟨Allocate bstack 45* ⟩ ≡
bstack = (tpair ∗) malloc(max use ∗ sizeof (tpair));
if (¬bstack ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣bstack␣array!\n");
exit (−10);

}
bytes += max use ∗ sizeof (tpair);

This code is used in section 44*.

46. ⟨Copy all the temporary variable nodes to the vmem array in proper format 46 ⟩ ≡
for (c = vars ; c; c−−) {
⟨Move cur tmp var backward to the previous temporary variable 21 ⟩;
o, vmem [c].name .lng = cur tmp var⃗name .lng ;
o, vmem [c].len = vars + 1; /∗ “infinitely long” prefix ∗/

}
This code is used in section 37.

47. We should now have unwound all the temporary data chunks back to their beginnings.

⟨Check consistency 47 ⟩ ≡
if (cur cell ̸= &cur chunk⃗cell [0] ∨ cur chunk⃗prev ̸= Λ ∨

cur tmp var ̸= &cur vchunk⃗var [0] ∨ cur vchunk⃗prev ̸= Λ) confusion ("consistency");
free (cur chunk );
for (cur vchunk = last vchunk ; cur vchunk ; cur vchunk = last vchunk ) {
last vchunk = cur vchunk⃗prev ;
free (cur vchunk );

}
This code is used in section 37.
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48. Buddy system redux. Here’s a version of Algorithms 2.5R and 2.5D that is appropriate for the
operations we need to do in bimp .
Each block of mem has size 2k for some k > 1, and it begins at an address that is a multiple of 2k. A

reserved block begins with an unsigned int that is less than 231; a free block begins with an unsigned int
that is ≥ 231 (thus its “sign” bit is 1). In fact, the first two words of the free block starting at b are the
complements of pointers in a doubly linked list, and we call them linkf and linkb . The third word of such
a block, called kval , contains the value of k when the block size is 2k; and the “buddy” of such a block b
begins at location b ⊕ (1 ≪ k). There is a doubly linked list for free blocks of each possible size 2k, with
header node mem [avail (k)].
When mems are counted, we assume that linkf and linkb are accessed simultaneously as part of the same

octabyte.
We begin by allocating 1 ≪ memk max entries to the mem array. But we maintain a variable memk to

record the fact that at most 1 ≪ memk of those entries have been used so far. The lists of available space
are relevant only for 1 < k < memk , and the statistics reported at the end of a run are calculated as if only
1 ≪ memk entries had been allocated. The user should increase memk max (with the ‘m’ command-line
parameter) when trying to solve a problem that needs an unusually large mem .

#define linkf (b) mem [b]
#define linkb(b) mem [(b) + 1]
#define kval (b) mem [(b) + 2]
#define avail (k) (((k)− 2) ≪ 2)
#define memfree (b) ((int) mem [b] < 0)
#define memk max default 22 /∗ allow 4 million items in mem by default ∗/
⟨Global variables 3* ⟩ +≡
int memk ; /∗ binary log of the number of spaces used so far in mem ∗/
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49. ⟨Check the sanity of bimp and mem 49 ⟩ ≡
for (l = 2; l < badlit ; l++) {
la = bimp [l].addr , k = bimp [l].k;
if (la & ((1 ≪ k)− 1))
fprintf (stderr , "addr␣of␣bimp["O"d]␣is␣clobbered␣(0x"O"x,␣k="O"d)!\n", l, la , k);

else if (bimp [l].alloc ̸= 1 ≪ k)
fprintf (stderr , "alloc␣of␣bimp["O"d]␣is␣clobbered␣("O"d,␣k="O"d)!\n", l, bimp [l].alloc , k);

else if (bimp [l].size > bimp [l].alloc) fprintf (stderr ,
"size␣of␣bimp["O"d]␣is␣clobbered␣("O"d>"O"d)!\n", l, bimp [l].size , bimp [l].alloc);

else if (la ≥ 1 ≪ memk ) fprintf (stderr ,
"addr␣of␣bimp["O"d]␣is␣out␣of␣bounds␣(0x"O"d>0x"O"d)!\n", l, la , 1 ≪ memk );

else if (memfree (la )) fprintf (stderr , "block␣0x"O"x␣of␣bimp["O"d]␣isn’t␣reserved!\n", la , l);
else
for (j = bimp [l].size − 1; j ≥ 0; j−−)
if (mem [la + j] < 2 ∨mem [la + j] ≥ badlit )
fprintf (stderr , "literal␣"O"d␣in␣bimp["O"d]␣is␣out␣of␣bounds!\n",mem [la + j], l);

}
for (k = 2; k < memk ; k++) {
for (p = ∼mem [avail (k)]; ; p = ∼linkf (p)) {
if ((p& ((1 ≪ k)− 1)) ∧ p ̸= avail (k))

fprintf (stderr , "link␣in␣avail("O"d)␣is␣clobbered␣(0x"O"x)!\n", k, p);
else if (p ≥ 1 ≪ memk ) fprintf (stderr ,

"link␣in␣avail("O"d)␣is␣out␣of␣bounds␣(0x"O"d>0x"O"d)!\n", k, p, 1 ≪ memk );
else if (kval (p) ̸= k)
fprintf (stderr , "kval␣of␣0x"O"x␣in␣avail("O"d)␣is␣"O"d!\n", p, k, kval (p));

else if (memfree (p⊕ (1 ≪ k)) ∧ kval (p⊕ (1 ≪ k)) ≡ k)
fprintf (stderr , "buddy␣of␣0x"O"x␣in␣avail("O"d)␣is␣also␣in␣that␣list!\n", p, k);

else if (∼linkf (∼linkb(p)) ̸= p)
fprintf (stderr , "linking␣anomaly␣at␣0x"O"x␣in␣avail("O"d)!\n", p, k);

if (∼linkf (p) ≡ avail (k)) break;
}

}
This code is used in section 31*.

50. The resize procedure does the main work of dynamic storage allocation. Given a literal l, it doubles
the current allocation bimp [l].alloc .
Two cases are distinguished, depending on whether the buddy of l’s current list is presently free or reserved.

The buddy of a reserved block of size 1 ≪ k might have been split up into smaller blocks, but it won’t be
any bigger.

⟨Subroutines 29 ⟩ +≡
void resize (register int l)
{

register uint a, j, k, kk , n, p, q, r, s;

mems += 4; /∗ pay the cost of subroutine linkage ∗/
oo , a = bimp [l].addr , n = bimp [l].size , k = bimp [l].k, s = 1 ≪ k, p = a⊕ s;
if ((o,memfree (p)) ∧ (o, kval (p) ≡ k)) ⟨Resize when the buddy is free 51 ⟩
else ⟨Resize when the buddy is reserved 53 ⟩;

finish : o, bimp [l].alloc = s+ s, bimp [l].k = k + 1;
}
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51. Here the buddy of block a is p, and it has turned out to be free. In the most favorable case, p will
actually be in exactly the right place so that we won’t have to recopy any data.

⟨Resize when the buddy is free 51 ⟩ ≡
{
⟨Remove p from its avail list 52 ⟩;
if ((a& s) ≡ 0) goto finish ; /∗ we lucked out ∗/
oo ,mem [p] = mem [a]; /∗ ensure that mem [p] isn’t negative ∗/
for (j = 1; j < n; j++) oo ,mem [p+ j] = mem [a+ j]; /∗ copy the rest of the data ∗/
o, bimp [l].addr = p;

}
This code is used in section 50.

52. ⟨Remove p from its avail list 52 ⟩ ≡
q = ∼linkb(p), r = ∼linkf (p); /∗ no mem cost, we’ve already accessed mem [p] ∗/
oo , linkf (q) = ∼r, linkb(r) = ∼q;

This code is used in sections 51 and 54.

53. In the more difficult case, we must find a block of twice the size, and copy the data there; then we free
up the present block.

⟨Resize when the buddy is reserved 53 ⟩ ≡
{
⟨Allocate a block p of size s+ s 54 ⟩;
oo ,mem [p] = mem [a]; /∗ ensure that mem [p] isn’t negative ∗/
for (j = 1; j < n; j++) oo ,mem [p+ j] = mem [a+ j]; /∗ copy the rest of the data ∗/
⟨Make a a free block of size 1 ≪ k 56 ⟩;
o, bimp [l].addr = p;

}
This code is used in section 50.

54. ⟨Allocate a block p of size s+ s 54 ⟩ ≡
for (kk = k + 1; kk < memk ; kk ++)
if (o, linkf (avail (kk )) ≠ ∼avail (kk )) { /∗ nonempty list found ∗/
p = ∼linkf (avail (kk ));
o; ⟨Remove p from its avail list 52 ⟩;
goto found ;

}
if (memk ≡ memk max ) { /∗ oops, we’re outta room ∗/
fprintf (stderr , "Sorry...␣more␣memory␣is␣needed!␣(Try␣option␣m"O"d.)\n",memk max + 1);
fprintf (stderr , "Job␣aborted␣after␣"O"llu␣mems,␣"O"llu␣nodes.\n",mems ,nodes );
exit (−666);

}
p = 1 ≪ memk ;
o, linkf (avail (memk )) = linkb(avail (memk )) = ∼avail (memk ); /∗ empty avail list ∗/
o, kval (avail (memk )) = memk ;
bytes += p ∗ sizeof (uint),memk ++;

found : /∗ location p begins an available block of size 1 ≪ kk ∗/
while (−−kk > k) ⟨Make p+ (1 ≪ kk ) a free block of size 1 ≪ kk 55 ⟩;

This code is used in section 53.
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55. ⟨Make p+ (1 ≪ kk ) a free block of size 1 ≪ kk 55 ⟩ ≡
{
o, q = ∼linkf (avail (kk )), r = p+ (1 ≪ kk );
oo , linkf (avail (kk )) = linkb(q) = ∼r;
oo , linkb(r) = ∼avail (kk ), linkf (r) = ∼q, kval (r) = kk ;

}
This code is used in section 54.

56. Since the buddy of a is not free, we needn’t try to “collapse” adjacent buddies together.

⟨Make a a free block of size 1 ≪ k 56 ⟩ ≡
o, q = ∼linkf (avail (k));
oo , linkf (avail (k)) = linkb(q) = ∼a;
oo , linkb(a) = ∼avail (k), linkf (a) = ∼q, kval (a) = k;

This code is used in section 53.

57. We need to get these data structures off to a good start at the very beginning. Here’s how that is
done, given lits and memk max , after the arrays mem and bimp have been allocated:

⟨ Initialize mem with empty bimp lists 57 ⟩ ≡
for (memk = 4; 1 ≪ memk < 4 ∗ (memk max − 2 + lits ); memk ++) ;
if (memk > memk max ) { /∗ memk max is too small even for empty lists! ∗/
fprintf (stderr , "The␣value␣of␣memk_max␣is␣way␣too␣small␣for␣"O"d␣literals!\n", lits );
exit (−667);

}
mem = (uint ∗) malloc((1 ≪ memk max ) ∗ sizeof (uint));
if (¬mem ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣mem␣array!\n");
exit (−10);

}
bytes += (1 ≪ memk ) ∗ sizeof (uint); /∗ we’ll update bytes if we use more ∗/
j = avail (memk max ); /∗ the first bimp list starts here ∗/
for (l = 2; l < badlit ; l++) {
oo ,mem [j] = 0, bimp [l].addr = j, bimp [l].size = 0, j += 4; /∗ reserve an empty block ∗/
o, bimp [l].alloc = 4, bimp [l].k = 2; /∗ give it the minimum size ∗/

}
for (k = 2; k < memk ; k++) {
if (j & (1 ≪ k)) { /∗ make a free block of size 1 ≪ k at j ∗/

o, linkf (avail (k)) = linkb(avail (k)) = ∼j;
o, linkf (j) = linkb(j) = ∼avail (k);
oo , kval (avail (k)) = kval (j) = k;
j += 1 ≪ k;

}
else { /∗ there are no free blocks of size 1 ≪ k initially ∗/
o, linkf (avail (k)) = linkb(avail (k)) = ∼avail (k);
o, kval (avail (k)) = k;

}
}

This code is used in section 38*.
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58. The istack can grow rather large in the worst case. But it can’t exceed the size of mem , since each
entry in istack represents an increase in a bimp table entry. Therefore we allocate it with the same kludge
that we used for mem .

⟨Allocate special arrays 58 ⟩ ≡
istack = (idata ∗) malloc((1 ≪ memk max ) ∗ sizeof (idata));
if (¬istack ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣istack␣array!\n");
exit (−10);

}
bytes += (1 ≪ memk ) ∗ sizeof (idata); /∗ we’ll update bytes if we use more ∗/
iptr max = 1 ≪ memk ;

See also sections 90, 109, 121, 134, and 165*.

This code is used in section 37.
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59. Updating the data structures. When we’ve decided to assign a value to a literal, we must deduce
and record all of the consequences of that decision. The following part of the program comes into play when
we’re beginning the calculation at a new node of the decision tree.
Sometimes bestlit turns out to be zero, because the favorite literal of the lookahead process has already

become true by forcing. Then we have a “dummy” level, which does no branching and inaugurates a new
node from which we can look further ahead.

⟨Begin the processing of a new node 59 ⟩ ≡
nstack [level ].lptr = rptr ,nodes++; /∗ for diagnostics only (no mem charged) ∗/
if (delta ∧ (mems ≥ thresh )) thresh += delta , print state (level );
if (mems > timeout ) {
fprintf (stderr , "TIMEOUT!\n");
goto done ;

}
o,nstack [level ].branch = −1, plevel = level ;
⟨Look ahead and gather data about how to make the next branch; but goto look bad if a contradiction

arises 123* ⟩;
if (forcedlits ) ⟨Update data structures for all consequences of the forced literals discovered during the

lookahead; but goto conflict if a contradiction arises 64 ⟩;
chooseit : ⟨Choose bestlit , which will be the next branch tried 140 ⟩;
o,nstack [level ].rptr = rptr ,nstack [level ].iptr = iptr ; /∗ backup pointers ∗/
if (bestlit ) {
o,nstack [level ].decision = bestlit ,nstack [level ].branch = 0;

tryit : l = bestlit , plevel = level + 1;
if ((verbose & show choices ) ∧ level ≤ show choices max )

fprintf (stderr , "Level␣"O"d"O"s:␣"O"s"O".8s␣("O"lld␣mems)\n", level ,
nstack [level ].branch ? "’" : "", litname (l),mems );

⟨Update data structures for all consequences of l; but goto conflict if a contradiction arises 62 ⟩;
} else if ((verbose & show choices ) ∧ level ≤ show choices max )
fprintf (stderr , "Level␣"O"d:␣no␣branch\n", level );

This code is used in section 152*.

60. Recall that the “current stamp” cs is an even number that represents the level of truth for assignments
that are currently being made. Any variable x with stamp [x] < cs is assumed to be free (unassigned);
otherwise x is assumed to be true, in the context of level cs , when stamp [x] is even, false when stamp [x] is
odd.
The highest level of truth is called real truth ; the next highest is near truth ; the next highest is proto truth ;

and lower values 2, 4, . . . , proto truth − 2 are used during lookahead.

#define real truth #fffffffe

#define near truth #fffffffc

#define proto truth #fffffffa

#define isfixed (l) (o, stamp [thevar (l)] ≥ cs )
#define isfree (l) (o, stamp [thevar (l)] < real truth )
#define iscontrary (l) ((stamp [thevar (l)]⊕ l) & 1) /∗ test this after isfixed (l) ∗/
#define stamptrue (l) (o, stamp [thevar (l)] = cs + (l & 1))

⟨Global variables 3* ⟩ +≡
uint bestlit ; /∗ literal chosen for branching by lookahead routines ∗/
uint cs ; /∗ the current level of truth (always even) ∗/
uint look cs , dlook cs ; /∗ saved values of cs ∗/
int fptr , eptr , lfptr ; /∗ queue pointers for breadth-first search ∗/
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61. Here’s a simple routine for use in debugging. It prints out all literals that are true with respect to a
given stamping level.

⟨Subroutines 29 ⟩ +≡
void print truths (uint cs )
{
register int x;

if (cs ≥ proto truth ) {
switch ((cs − proto truth ) ≫ 1) {
case 0: fprintf (stderr , "proto_truths␣or␣better:"); break;
case 1: fprintf (stderr , "near_truths␣or␣better:"); break;
case 2: fprintf (stderr , "real_truths:"); break;
}

} else fprintf (stderr , "truths␣at␣least␣"O"d:", cs );
for (x = 1; x ≤ vars ; x++)

if (stamp [x] ≥ cs ) fprintf (stderr , "␣"O"s"O".8s", stamp [x] & 1 ? "~" : "", vmem [x].name .ch8 );
fprintf (stderr , "\n");

}
void print proto truths (void)
{
print truths (proto truth );

}
void print near truths (void)
{
print truths (near truth );

}
void print real truths (void)
{
print truths (real truth );

}

62. In the present part of the program, we set cs = near truth . This level means that the literal is on the
rstack but its full consequences haven’t yet been explored.
We do a breadth-first search, using rstack to contain the literals that are being asserted—first at level

near truth , then at level real truth . Pointers fptr and eptr point to the front and end of the queue that
governs the search.

⟨Update data structures for all consequences of l; but goto conflict if a contradiction arises 62 ⟩ ≡
cs = near truth ;
fptr = eptr = rptr ;
⟨Bump istamp to a unique value 65 ⟩;
⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;

promote : ⟨Promote near-truth to real-truth; but goto conflict if a contradiction arises 63 ⟩;
if (o,nstack [level ].branch < 0) { /∗ we’ve finished the forced literals ∗/
if (level ) goto chooseit ;
forcedlits = 0;
goto enter level ; /∗ at the root, it’s back to square zero ∗/

}
This code is used in section 59.
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63. ⟨Promote near-truth to real-truth; but goto conflict if a contradiction arises 63 ⟩ ≡
while (fptr < eptr ) {
o, ll = rstack [fptr ++];
⟨Update data structures for the real truth of ll ; but goto conflict if a contradiction arises 69* ⟩;

}
rptr = eptr ; /∗ accept all the propagations ∗/

This code is used in section 62.

64. The forced literals act as “seeds” for another bread-first search.
If the input had unary clauses, the computation actually begins here, so that the implications of those

clauses are perceived early.

⟨Update data structures for all consequences of the forced literals discovered during the lookahead; but
goto conflict if a contradiction arises 64 ⟩ ≡

{
special start : if (verbose & show details )

fprintf (stderr , "(lookahead␣for␣level␣"O"d␣forces␣"O"d)\n", level , forcedlits );
cs = near truth ;
fptr = eptr = rptr ;
⟨Bump istamp to a unique value 65 ⟩;
for (i = 0; i < forcedlits ; i++) {
o, l = forcedlit [i];
⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;

}
goto promote ;

}
This code is used in section 59.

65. The istamp field of literal l is marked with the current value of the global variable istamp when l gets
its first istack entry during a particular phase of the search; then we can be sure that there’s at most one
istack entry per literal during any particular phase.
The loop here is “never” needed, except in problems that are well beyond what I ever imagine trying to

solve. But I’m including it anyway, because it makes me feel virtuous.

⟨Bump istamp to a unique value 65 ⟩ ≡
if (++istamp ≡ 0) { /∗ overflow has occurred after 232 times ∗/
istamp = 1;
for (l = 2; l < badlit ; l++) o, lmem [l].istamp = 0;

}
This code is used in sections 62 and 64.

66. The bstamp field of literal l is similar to istamp , but it is used for a different purpose: We mark it
when l is known to be implied by some other literal of interest.

⟨Bump bstamp to a unique value 66 ⟩ ≡
if (++bstamp ≡ 0) { /∗ overflow has occurred after 232 times ∗/
bstamp = 1;
for (l = 2; l < badlit ; l++) o, lmem [l].bstamp = 0;

}
This code is used in sections 73 and 106.

67. ⟨Global variables 3* ⟩ +≡
uint istamp ; /∗ used for unique identifications ∗/
uint bstamp = 32; /∗ used for unique identifications of another kind ∗/
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68*. The code in this section is part of the inner loop, so we want it to be fast. Fortunately the task is
fairly simple: When one literal is asserted to be true at the current cs level, all the literals in its bimp list
are also asserted. And we continue until no more can be asserted, unless a contradiction arises first.
Our data structures contain both binary implications and k-ary implications for k ≥ 3. We examine only

the binary ones here, because they’re simpler. By focusing on them first, we have a better chance of detecting
contradictions sooner.

⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩ ≡
if (isfixed (l)) {
if (iscontrary (l)) goto conflict ;

} else {
if (verbose & show details ) fprintf (stderr , "nearfixing␣"O"s"O".8s\n", litname (l));
stamptrue (l);
lfptr = eptr ;
o, rstack [eptr ++] = l;
while (lfptr < eptr ) {

o, l = rstack [lfptr ++];
for (o, la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) {

o, lp = mem [la ];
if (isfixed (lp)) {
if (iscontrary (lp)) goto conflict ;

} else {
if (verbose & show details ) fprintf (stderr , "␣nearfixing␣"O"s"O".8s\n", litname (lp));
stamptrue (lp);
o, rstack [eptr ++] = lp ;

}
}

}
}

This code is used in sections 62, 64, 72*, and 73.

69*. We get to this part of the program when a literal loses its freedom and becomes fully assigned to truth
or falsity at the highest possible level. Every active big clause that contains ll or its complement is affected:
Those with ll itself become satisfied, while those with bar (ll ) become shorter.
Many details of that transformation are described in the special “big clauses” addendum at the end of

this program. Here we introduce only a few of them.

⟨Update data structures for the real truth of ll ; but goto conflict if a contradiction arises 69* ⟩ ≡
o, stamp [thevar (ll )] = real truth + (ll & 1);
if (verbose & show details ) fprintf (stderr , "fixing␣"O"s"O".8s\n", litname (ll ));
⟨Remove thevar (ll ) from the freevar list 70 ⟩;
⟨Swap out all big clauses that contain ll 156* ⟩;
tll = bar (ll ), bptr = 0; /∗ clear the bstack ∗/
⟨Reduce all big clauses that contain tll ; if any become binary, swap them out and put them on

bstack 71* ⟩;
while (bptr ) {
o, bptr −−, u = bstack [bptr ].u, v = bstack [bptr ].v;
⟨Update for a potentially new binary clause u ∨ v 72* ⟩;

}
This code is used in section 63.
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70. ⟨Remove thevar (ll ) from the freevar list 70 ⟩ ≡
x = thevar (ll );
o, y = freevar [−−freevars ];
if (x ̸= y) {
o, xl = freeloc [x];
o, freevar [xl ] = y;
o, freeloc [y] = xl ;
o, freeloc [x] = freevars ;
o, freevar [freevars ] = x;

}
This code is used in section 69*.

71*. When tll becomes false in clause c, we simply decrease the size of c by 1, without taking time to move
tll to a different place in cmem . The first time this happens to c is, however, special: Then we also want to
mark all of c’s other literals as “participants,” as explained in the preselection process below. That case can
be recognized by the condition cinx [c].addr + cinx [c].size = cinx [c− 1].addr . While we’re examining those
other literals, we might as well move tll to the end of the clause.
Interesting things start to happen when all but two of c’s literals have been falsified, before any of them

have become true. At that point c becomes inactive and its remaining literals yield a new binary clause.

⟨Reduce all big clauses that contain tll ; if any become binary, swap them out and put them on
bstack 71* ⟩ ≡

if (verbose & show details ) fprintf (stderr , "␣("O"s"O".8s␣out)\n", litname (tll ));
for (o, tla = kinx [tll ].addr , tls = kinx [tll ].size ; tls ; tla++, tls−−) {
oo , c = kmem [tla ], cia = cinx [c].addr , cis = cinx [c].size ;
if (o, cia + cis ≡ cinx [c− 1].addr ) { /∗ c is reduced for the first time ∗/
for (ua = cia , su = cis ; su ; ua++, su−−) {
o, u = cmem [ua ];
if (u ≡ tll ) au = ua ;
else ⟨Record thevar (u) as a participant 86* ⟩;

}
if (u ̸= tll ) oo , cmem [ua − 1] = tll , cmem [au ] = u;

}
o, cinx [c].size = cis − 1;
if (cis ≡ 3) { /∗ exactly two literals of c are now free ∗/
for (ci = cia , v = cmem [ci ]; ; ci ++) {
o, u = cmem [ci ];
if (isfree (u)) break;

}
if (ci ̸= cia ) oo , cmem [cia ] = u, cmem [ci ] = v;
for (ci ++; ; ci ++) {

o, v = cmem [ci ];
if (isfree (v)) break;

}
if (ci ̸= cia + 1) ooo , cmem [ci ] = cmem [cia + 1], cmem [cia + 1] = v;
o, bstack [bptr ].u = u, bstack [bptr ].v = v, bptr ++;
if (verbose & show details ) fprintf (stderr , "␣␣"O"s"O".8s−>"O"s"O".8s|"O"s"O".8s\n",

litname (bar (tll )), litname (u), litname (v));
⟨Swap c out of u’s clause list 158* ⟩;
u = v; ⟨Swap c out of u’s clause list 158* ⟩;

}
}

This code is used in section 69*.
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72*. When a big clause reduces to the binary clause u ∨ v, the “real” truth status of u and v is not yet
known; but they might be “nearly” true or false. (In the latter case, we’ll be setting them really true or false
as we continue our breadth-first search in the queue on the rstack .) There are five possibilities:

• If either u or v is near-true, the binary clause is satisfied and we needn’t do anything.

• If both u and v are near-false, we’ve reached a contradiction.

• If u is near-false but v is unknown, we can make v near-true.

• If u is unknown but v is near-false, we can make u near-true.

• Otherwise u and v are both unknown, and we’ve deduced the clause u ∨ v.

⟨Update for a potentially new binary clause u ∨ v 72* ⟩ ≡
if (isfixed (u)) { /∗ equivalently, if (o, stamp [thevar (u)] ≥ near truth ) ∗/
if (iscontrary (u)) { /∗ u is stamped false ∗/
if (isfixed (v)) {
if (iscontrary (v)) goto conflict ;

} else { /∗ v is unknown ∗/
l = v;
⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;

}
}

} else { /∗ u is unknown ∗/
if (isfixed (v)) {
if (iscontrary (v)) {
l = u;
⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;

}
} else ⟨Update for a new binary clause u ∨ v 73 ⟩;

}
This code is used in section 69*.
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73. Now we’ve made some definite progress, by deducing a “new” binary clause u ∨ v, and we hope to
capitalize on it. Three opportunities, not mutually exclusive, may present themselves at this point:

• If ū ∨ v is already in our bimp table, we can make v near-true.

• If u ∨ v̄ is already in our bimp table, we can make u near-true.

• If u ∨ v is not already in our bimp table, we can insert it.

Furthermore, we might also know the clause v̄ ∨ w, say, in which case the binary clause u ∨ w is also true.
Experience shows that such “compensation resolvents” are useful, so we add them to our bimp collection.
This is the part of the program where we use bstamp to mark everything that’s presently implied by ū.

And then we use it to mark everything that’s presently implied by v̄.
An attentive reader will notice that, if ū ∨ v and u ∨ v̄ are both already in bimp , we’ll make u near-true

and the propagation routine will take care of v.

⟨Update for a new binary clause u ∨ v 73 ⟩ ≡
{
⟨Bump bstamp to a unique value 66 ⟩;
o, lmem [bar (u)].bstamp = bstamp ;
for (o, au = bimp [bar (u)].addr , k = su = bimp [bar (u)].size ; k; au++, k−−)
oo , lmem [mem [au ]].bstamp = bstamp ;

if (o, lmem [bar (v)].bstamp ≡ bstamp) { /∗ we already have u ∨ v̄ ∗/
fix u : l = u; ⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;
} else if (o, lmem [v].bstamp ̸= bstamp) { /∗ we don’t have u ∨ v ∗/
o, ua = bimp [bar (u)].alloc ;
⟨Make sure that bar (u) has an istack entry 74 ⟩;
⟨Add compensation resolvents from bar (u); but goto fix u if u is forced true 76 ⟩;
⟨Bump bstamp to a unique value 66 ⟩;
o, lmem [bar (v)].bstamp = bstamp ;
for (o, av = bimp [bar (v)].addr , k = sv = bimp [bar (v)].size ; k; av ++, k−−)
oo , lmem [mem [av ]].bstamp = bstamp ;

if (o, lmem [bar (u)].bstamp ≡ bstamp) { /∗ we already have ū ∨ v ∗/
fix v : l = v; ⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩;
} else {
o, va = bimp [bar (v)].alloc ;
⟨Make sure that bar (v) has an istack entry 77 ⟩;
⟨Add compensation resolvents from bar (v); but goto fix v if v is forced true 79 ⟩;
if (su ≡ ua ) resize (bar (u)), ua += ua , o, au = bimp [bar (u)].addr + su ;
oo ,mem [au ] = v, bimp [bar (u)].size = su + 1; /∗ ū implies v ∗/
if (sv ≡ va ) resize (bar (v)), va += va , o, av = bimp [bar (v)].addr + sv ;
oo ,mem [av ] = u, bimp [bar (v)].size = sv + 1; /∗ v̄ implies u ∗/

}
}

}
This code is used in section 72*.

74. At this point su = bimp [bar (u)].size .

⟨Make sure that bar (u) has an istack entry 74 ⟩ ≡
if (o, lmem [bar (u)].istamp ̸= istamp) {
o, lmem [bar (u)].istamp = istamp ;
o, istack [iptr ].lit = bar (u), istack [iptr ].size = su ;
⟨ Increase iptr 75 ⟩;

}
This code is used in sections 73, 128*, and 137.
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75. ⟨ Increase iptr 75 ⟩ ≡
iptr ++;
if (iptr ≡ iptr max ) {
bytes += iptr ∗ sizeof (idata);
iptr max ≪= 1;

}
This code is used in sections 74, 77, 78, and 138.

76. At this point all implications of bar (u) are stamped with bstamp , including bar (u) itself. And since
u∨ v is true, we know that v is also implied by bar (u). Therefore any literal w implied by v is a potentially
new consequence of bar (u), called a “compensation resolvent.” (It can be obtained by resolving u ∨ v with
v̄∨w.) Notice that w cannot be near-false; otherwise the propagation routine would have made v near-false,
since v → w implies w̄ → v̄.

We maintain the values au = bimp [bar (u)].addr + su , su = bimp [bar (u)].size , ua = bimp [bar (u)].alloc .

⟨Add compensation resolvents from bar (u); but goto fix u if u is forced true 76 ⟩ ≡
for (o, la = bimp [v].addr , ls = bimp [v].size ; ls ; la++, ls−−) {
o, w = mem [la ];
if (¬isfixed (w)) {
if (o, lmem [bar (w)].bstamp ≡ bstamp) goto fix u ; /∗ ū implies w and w̄ ∗/
if (o, lmem [w].bstamp ̸= bstamp) { /∗ u ∨ w is new ∗/
if (verbose & show details )
fprintf (stderr , "␣␣␣−>"O"s"O".8s|"O"s"O".8s\n", litname (u), litname (w));

if (su ≡ ua ) resize (bar (u)), ua += ua , o, au = bimp [bar (u)].addr + su ;
oo ,mem [au++] = w, bimp [bar (u)].size = ++su ; /∗ ū implies w ∗/
o, aw = bimp [bar (w)].addr , sw = bimp [bar (w)].size ;
⟨Make sure that bar (w) has an istack entry 78 ⟩;
if (o, sw ≡ bimp [bar (w)].alloc) resize (bar (w)), o, aw = bimp [bar (w)].addr ;
o, bimp [bar (w)].size = sw + 1;
o,mem [aw + sw ] = u; /∗ w̄ implies u ∗/

}
}

}
This code is used in section 73.

77. At this point sv = bimp [bar (v)].size ; we do for v as we did for u.

⟨Make sure that bar (v) has an istack entry 77 ⟩ ≡
if (o, lmem [bar (v)].istamp ̸= istamp) {
o, lmem [bar (v)].istamp = istamp ;
o, istack [iptr ].lit = bar (v), istack [iptr ].size = sv ;
⟨ Increase iptr 75 ⟩;

}
This code is used in section 73.

78. Here sw = bimp [bar (w)].size .

⟨Make sure that bar (w) has an istack entry 78 ⟩ ≡
if (o, lmem [bar (w)].istamp ̸= istamp) {

o, lmem [bar (w)].istamp = istamp ;
o, istack [iptr ].lit = bar (w), istack [iptr ].size = sw ;
⟨ Increase iptr 75 ⟩;

}
This code is used in sections 76 and 79.
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79. This is the kind of program that cannot be written well when loud music is playing.

⟨Add compensation resolvents from bar (v); but goto fix v if v is forced true 79 ⟩ ≡
for (o, la = bimp [u].addr , ls = bimp [u].size ; ls ; la++, ls−−) {
o, w = mem [la ];
if (¬isfixed (w)) {
if (o, lmem [bar (w)].bstamp ≡ bstamp) goto fix v ; /∗ v̄ implies w and w̄ ∗/
if (o, lmem [w].bstamp ≠ bstamp) { /∗ v ∨ w is new ∗/
if (verbose & show details )
fprintf (stderr , "␣␣␣−>"O"s"O".8s|"O"s"O".8s\n", litname (v), litname (w));

if (sv ≡ va ) resize (bar (v)), va += va , o, av = bimp [bar (v)].addr + sv ;
oo ,mem [av ++] = w, bimp [bar (v)].size = ++sv ; /∗ v̄ implies w ∗/
o, aw = bimp [bar (w)].addr , sw = bimp [bar (w)].size ;
⟨Make sure that bar (w) has an istack entry 78 ⟩;
if (o, sw ≡ bimp [bar (w)].alloc) resize (bar (w)), o, aw = bimp [bar (w)].addr ;
o, bimp [bar (w)].size = sw + 1;
o,mem [aw + sw ] = v; /∗ w̄ implies v ∗/

}
}

}
This code is used in section 73.
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80. Downdating the data structures. When a contradiction arises, backtracking becomes necessary:
Everything that went up must come down.
Fortunately the task of undoing isn’t too tough. The istack contains all the information needed to discard

any binary implications that no longer hold; and the rstack records every literal that has been made nearly
or really true.
Let’s look at the istack entries first, because they’re so easy. The code almost writes itself.

⟨Discard binary implications at the current level 80 ⟩ ≡
if (o,nstack [level ].branch ≥ 0) {
for (o, j = nstack [level ].iptr ; iptr > j; iptr −−) {
o, l = istack [iptr − 1].lit , sl = istack [iptr − 1].size ;
o, bimp [l].size = sl ;

}
}

This code is used in section 84.

81. The rstack entries come in two parts, one easy and the other a bit tricky. The literals on rstack [j]
for fptr ≤ j < eptr are the nice guys; they’ve become nearly true, but we haven’t updated any serious
consequences of that near-truth. Thus we merely need to unset those tentative assignments.

⟨Unset the nearly true literals 81 ⟩ ≡
for (j = fptr ; j < eptr ; j++) oo , stamp [thevar (rstack [j])] = 0;

This code is used in section 84.

82*. The literals on rstack [j] for rptr ≤ j < fptr have become really true, and the ripple effects of those
settings require more attention. Of principal importance is the fact that the big clauses in which those
literals or their complements appear may have become inactive, in which case they’ve been swapped to the
“invisible” part of the relevant kinx lists.

There’s good news here: We don’t need to unswap any of the kinx entries while we’re backtracking! The
order of those entries isn’t important; only the state, active versus inactive, matters. The active entries are
those that appear among the first size entries, beginning at addr . The inactive ones follow, in precisely
the order in which they were swapped out, because a pair never participates in swaps after it has become
inactive. Therefore we can reactivate the most-recently-swapped-out item in any particular list by simply
increasing size by 1.
Two or more literals of the same clause may have all become really true or really false. We can be sure that

the hocus pocus in the preceding paragraph works correctly if we are careful to do the virtual unswapping
in precisely the reverse order from which we’ve done the swapping.
Similar reasoning applies to the list of free variables. When a literal left that list, we moved it from

wherever it was in the early part of that list, by swapping it with the last currently free item, and then
we decreased freevars by 1. To undo this operation, we simply increase freevars by 1. (The ordering isn’t
actually as critical here; it would suffice to change freevars once and for all by setting it to the value it had
at the beginning of the node. But any savings in running time would be negligible.)

⟨Unset the really true literals 82* ⟩ ≡
for (j = fptr − 1; j ≥ rptr ; j−−) { /∗ decreasing order is important ∗/
o, ll = rstack [j];
tll = bar (ll );
⟨Unreduce all big clauses that contain tll ; if they had become binary, swap them back in 83* ⟩;
⟨Swap in all big clauses that contain ll 159* ⟩;
freevars++;
o, stamp [thevar (ll )] = 0;

}
This code is used in section 84.
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83*. ⟨Unreduce all big clauses that contain tll ; if they had become binary, swap them back in 83* ⟩ ≡
if (verbose & show details ) fprintf (stderr , "␣("O"s"O".8s␣in)\n", litname (tll ));
for (o, tls = kinx [tll ].size , tla = kinx [tll ].addr + tls − 1; tls ; tla−−, tls−−) {
o, c = kmem [tla ];
o, cia = cinx [c].addr , cis = cinx [c].size + 1;
o, cinx [c].size = cis ;
if (cis ≡ 3) {
o, u = cmem [cia ]; ⟨Swap c back in to u’s clause list 160* ⟩;
o, u = cmem [cia + 1]; ⟨Swap c back in to u’s clause list 160* ⟩;

}
}

This code is used in section 82*.

84. ⟨Recover from conflicts 84 ⟩ ≡
dl contra : ⟨Recover from a double lookahead contradiction 148 ⟩;
contra : ⟨Recover from a lookahead contradiction 130* ⟩;
goto look bad ; /∗ a conflict has arisen during lookahead ∗/

conflict : ⟨Unset the nearly true literals 81 ⟩;
backtrack : ⟨Unset the really true literals 82* ⟩;
⟨Discard binary implications at the current level 80 ⟩;
if (o,nstack [level ].branch ≡ 0) ⟨Move to branch 1 85 ⟩;

look bad : if (level ) {
level −−;
if (level < 31) prefix &= −(1 ≪ (31− level )); /∗ see below ∗/
fptr = rptr ;
o, rptr = nstack [level ].rptr ;
goto backtrack ;

}
unsat : if (1) {

printf ("~\n"); /∗ the formula was unsatisfiable ∗/
if (verbose & show basics ) fprintf (stderr , "UNSAT\n");

} else {
satisfied : if (verbose & show basics ) fprintf (stderr , "!SAT!\n");
⟨Print the solution found 153 ⟩;

}
This code is used in section 152*.

85. A binary string is implicitly associated with every node of the search tree: At level 0, before we’ve
done any branching at all, the string is empty. Branch 0 of every node appends 0 to the parent string, and
branch 1 appends 1. The length of the string is therefore level . We also maintain the first 32 bits of the
current string in the global variable prefix , left-justified within a 32-bit word. (This prefix is used to help
guide locality of search, by identifying “participants” as explained in the preselection algorithm below.)

⟨Move to branch 1 85 ⟩ ≡
{
bestlit = bar (nstack [level ].decision );
o,nstack [level ].decision = bestlit ,nstack [level ].branch = 1;
if (level < 32) prefix += 1 ≪ (31− level );
goto tryit ; /∗ if at first you don’t succeed, try the other branch ∗/

}
This code is used in section 84.
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86*. A variable x is said to “participate” at a branch node if it occurs in one of the nonbinary clauses that
is produced in that node or in one of that node’s ancestors. If x has already become a participant, the string
specified by vmem [x].pfx and vmem [x].len will be a prefix of the current string.
In this step we update the pfx and lev fields of variables that are participating in the current activity.

Notice that this information does not need to be changed when backtracking.
(At levels above 31 this program accepts cousins as well as ancestors.)

⟨Record thevar (u) as a participant 86* ⟩ ≡
{
x = thevar (u);
o, p = vmem [x].pfx , q = vmem [x].len ;
if (q < plevel ) {
t = prefix ;
if (q < 32) t &= −(1LL ≪ (32− q)); /∗ zero out irrelevant bits ∗/
if (p ̸= t) o, vmem [x].pfx = prefix , vmem [x].len = plevel ;

} else o, vmem [x].pfx = prefix , vmem [x].len = plevel ;
}

This code is used in section 71*.



§87 SAT11K PRESELECTION 43

87. Preselection. The main purpose of lookahead is to choose the best free variable on which to branch.
Of course we have limited foreknowledge, so we must make guesses. And we don’t have time to explore every
variable that remains free, except in trivial ways, unless we’re near the root of the search tree.
So we begin the lookahead task by identifying a set of candidate variables that appear to be the most

promising among all those that are currently free. That’s called preselection.

⟨Do the prelookahead 87 ⟩ ≡
if (freevars ≡ 0) goto satisfied ;
⟨Preselect a set of candidate variables for lookahead 97* ⟩;
⟨Determine the strong components; goto look bad if there’s a contradiction 104 ⟩;
⟨Construct a suitable forest 117 ⟩;

This code is used in section 123*.

88. The candidates are collected and identified in an array cand , whose entries have two fields, var and
rating .

⟨Type definitions 5 ⟩ +≡
typedef struct cdata struct {
uint var ; /∗ the variable that’s a candidate ∗/
float rating ; /∗ its estimated importance ∗/

} cdata;

89. ⟨Global variables 3* ⟩ +≡
cdata ∗cand ; /∗ list of candidates for lookahead ∗/
int cands ; /∗ the number of candidates in cand ∗/
float sum ; /∗ accumulator for computing the ratings ∗/
int no newbies ; /∗ are candidates restricted to participants? ∗/
float ∗rating ; /∗ estimates of how useful each variable will be for branching ∗/
uint prefix ; /∗ first 32 bits of the current prefix string ∗/
int plevel ; /∗ length of the current prefix string ∗/
int maxcand ; /∗ the maximum number of candidates desired at the current node ∗/

90. ⟨Allocate special arrays 58 ⟩ +≡
cand = (cdata ∗) malloc(vars ∗ sizeof (cdata));
if (¬cand ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cand␣array!\n");
exit (−10);

}
bytes += vars ∗ sizeof (cdata);
rating = (float ∗) malloc((vars + 1) ∗ sizeof (float));
if (¬rating ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣rating␣array!\n");
exit (−10);

}
bytes += (vars + 1) ∗ sizeof (float);

91*. The first stage of preselection does examine all the free variables, in order to get enough data to choose
the candidates. Thus it constitutes one of the inner loops for which we hope to do everything rapidly. The
general idea is to compute a heuristic score h(l) for each free literal l, which estimates the relative amount
by which asserting l will reduce the current problem.
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92*. An elaborate method is used in SAT11 for the case when all big clauses are ternary. But in the general
k-ary case we will content ourselves with a very simple formula:

h(l) = α+ s(l) +
∑
l→l′

s(l′),

where s(l) is the number of occurrences of l̄ in big clauses that are currently active. This quantity h(l)
estimates the potential number of big-clause reductions that occur when l becomes true. The default value
α = 1.001 is recommended, but of course other magic values can be tried by using the command-line
parameter ‘a’.

93*. ⟨Compute sum , the score of l 93* ⟩ ≡
{
ullng acc ; /∗ an accumulator ∗/
o, acc = kinx [bar (l)].size ;
for (o, la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) {
o, u = mem [la ];
if (isfree (u)) acc += kinx [bar (u)].size ;

}
sum = alpha + (float) acc ;

}
This code is used in section 94*.

94*. We don’t actually need the individual scores h(l) for each free literal l: Only the product h(l)h(l̄) is
used, as our rating for each free variable x.

⟨Compute rating [x] 94* ⟩ ≡
{
float s;

l = poslit (x);
⟨Compute sum , the score of l 93* ⟩;
s = sum ;
l++;
⟨Compute sum , the score of l 93* ⟩;
rating [x] = s ∗ sum ;
if (verbose & show scores ) fprintf (stderr , "("O".8s:␣pos␣"O".2f␣neg␣"O".2f␣r="O".4g)\n",

vmem [x].name .ch8 , s, sum , s ∗ sum );
}

This code is used in section 95*.

95*. ⟨Put the ratings in rating 95* ⟩ ≡
for (k = 0; k < freevars ; k++) {
o, x = freevar [k];
⟨Compute rating [x] 94* ⟩;

}
This code is used in section 97*.
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96*. The maximum number of candidates permitted, in this implementation, depends on the current
level rather than on the number of variables or clauses in the problem: We calculate maxcand = the
maximum of levelcand /level and mincutoff , where levelcand = 600 and mincutoff = 30 by default. (At
level 0, for example, maxcand is infinite; at level 5 it is 120; at levels 20 or more it is 30.) Then,
while cands ≥ 2 ∗ maxcand , we repeatedly remove all candidates whose rating is less than the mean;
quite a few really weak candidates might therefore go away if a few strong ones dominate. Finally, if
maxcand < cands < 2 ∗maxcand , we eliminate the cands −maxcand candidates with smallest ratings.

That policy might seem peculiar, but it reflects the reality of combinatorial search problems: If the problem
is easy, we don’t care if we solve it in 2 seconds or .00002 seconds. On the other hand if the problem is so
difficult that it can only be solved by looking ahead more than we can accomplish in a reasonable time, we
might as well face the fact that we won’t solve it anyway. (There’s no point in looking ahead at 60 variables
at depth 60, because we won’t be able to deal with more than 250 or so nodes in any reasonable search tree.)

97*. ⟨Preselect a set of candidate variables for lookahead 97* ⟩ ≡
⟨Put the ratings in rating 95* ⟩;
maxcand = (level ≡ 0 ? freevars : levelcand /level );
if (maxcand < mincutoff ) maxcand = mincutoff ;
⟨Put all free participants into the initial list of candidates 98 ⟩;
⟨Pare down the candidates to at most maxcand 101 ⟩;

This code is used in section 87.

98. The next stage in this winnowing-down process tries to avoid any variable that hasn’t participated in a
ternary clause that has been reduced; otherwise we might find ourselves trying to solve several independent
problems at the same time. In order to weed out “newbies” (nonparticipants), we allow x to be a candidate
only if vmem [x].pfx and vmem [x].len specify a string that’s a prefix of the current node’s string. (However,
we rescind this restriction if it gives us no candidates. For example, at level 0 there are no participants,
because we haven’t reduced any clauses.)
If the V option is being used, to distinguish “primary” variables, we consider a nonprimary variable to be

a nonparticipant (so that it will not normally become a candidate).

⟨Put all free participants into the initial list of candidates 98 ⟩ ≡
no newbies = (plevel > 0);

init cand : for (cands = k = 0, sum = 0.0; k < freevars ; k++) {
o, x = freevar [k];
o, stamp [x] = 0; /∗ erase all former assignments ∗/
if (no newbies ) {

if (x > primary vars ) continue;
o, t = vmem [x].pfx , l = vmem [x].len ;
if (l ≡ plevel ) {
if (t ̸= prefix ) continue; /∗ not a participant ∗/

} else if (l > plevel ) continue;
else if (t ̸= (l < 32 ? prefix &−(uint)(1LL ≪ (32− l)) : prefix )) continue;

}
oo , cand [cands ].var = x, cand [cands ].rating = rating [x];
cands++, sum += rating [x];

}
if (cands ≡ 0) {
⟨ If all clauses are satisfied, goto satisfied 99 ⟩;
no newbies = 0;
goto init cand ; /∗ if there are no participants, accept all comers ∗/

}
This code is used in section 97*.
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99. ⟨ If all clauses are satisfied, goto satisfied 99 ⟩ ≡
for (j = 0; j < freevars ; j++) {
o, x = freevar [j];
l = poslit (x);
⟨ If l implies any unsatisfied clauses, goto nogood 100* ⟩;
l++;
⟨ If l implies any unsatisfied clauses, goto nogood 100* ⟩;

}
goto satisfied ;

nogood :

This code is used in section 98.

100*. ⟨ If l implies any unsatisfied clauses, goto nogood 100* ⟩ ≡
if (o, kinx [bar (l)].size ) goto nogood ; /∗ all active kinxs are unsatisfied ∗/
for (o, la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) {
o, u = mem [la ];
if (o, stamp [thevar (u)] ̸= real truth + (u& 1)) goto nogood ;

}
This code is used in section 99.

101. At this point we’ve got cands candidates in the cand array, and sum is the sum of their ratings. The
next task is to eliminate low-rated candidates, if we have too many to handle.

⟨Pare down the candidates to at most maxcand 101 ⟩ ≡
for (k = 1; cands ≥ 2 ∗maxcand ∧ k; ) {
register float mean = 0.9999 ∗ sum/(double) cands ;

for (j = k = 0, sum = 0.0; j < cands ; ) {
if (o, cand [j].rating ≥ mean ) sum += cand [j].rating , j++;
else oo , k = 1, cand [j] = cand [−−cands ]; /∗ don’t advance j, discard a loser ∗/

}
}
if (cands > maxcand ) ⟨Select the maxcand best-rated candidates 102 ⟩;
if (cands ≡ 0) confusion ("cands");

This code is used in section 97*.
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102. Here we make the cand array into a heap, with low-rated elements in the lowest positions. Then we
delete the ones we don’t want. (See Algorithm 5.2.3H. The heap condition is

cand [i].rating ≤ cand [2 ∗ i+ 1].rating and cand [i].rating ≤ cand [2 ∗ i+ 2].rating

whenever the subscripts are nonnegative and less than cands .)

⟨Select the maxcand best-rated candidates 102 ⟩ ≡
{
j = cands ≫ 1; /∗ the heap condition holds for i ≥ j ∗/
while (j > 0) {
j−−;
⟨Sift cand [j] up 103 ⟩;

}
while (1) {

oo , cand [0] = cand [−−cands ]; /∗ discard a loser ∗/
if (cands ≡ maxcand ) break;
⟨Sift cand [j] up 103 ⟩;

}
}

This code is used in section 101.

103. ⟨Sift cand [j] up 103 ⟩ ≡
{
register float r;
cdata c;

o, c = cand [j], r = c.rating ;
for (i = j, jj = (j ≪ 1) + 1; jj < cands ; i = jj , jj = (jj ≪ 1) + 1) {

if (jj + 1 < cands ∧ (o, cand [jj + 1].rating < cand [jj ].rating )) jj ++;
if (o, r ≤ cand [jj ].rating ) break;
o, cand [i] = cand [jj ];

}
if (i > j) o, cand [i] = c;

}
This code is used in section 102.
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104. Strong components. If the binary implication graph has a nontrivial strong component, all literals
in that component are locked together: Any one of their values determines all the rest. Therefore we don’t
want to bother looking ahead on two variables that have literals in the same strong component.
Robert Tarjan has devised a beautiful algorithm that finds the strong components very efficiently [SIAM

Journal on Computing 1 (1972), 146–160]; and his algorithm also produces a topological sort on the
representatives of those components, as an extra bonus. We are going to want the preselected candidates to
be topologically sorted, because that will speed up the lookaheads that we’ll be doing. Therefore Tarjan’s
algorithm is a perfect fit for our present situation.
Note: We are going to restrict ourselves to direct implications between candidates, instead of considering

indirect chains of implications l0 → l1 → · · · → lk with k > 1, where l0 and lk are candidates but the
intermediate literals l1, . . . , lk−1 are not. The efficiency of Tarjan’s algorithm suggests that we could consider
the full digraph instead of its restriction to candidates only, perhaps before deciding on the list of candidates.
However, cases in which indirect implications provide significant information appear to be rare. (At least,
the author has yet to see a single instance where two chosen candidates, in the most time-consuming parts
of a search tree, are implicitly linked without also being explicitly linked.) It seems that the variables chosen
to be candidates almost never have important non-candidate neighbors.
The following implementation of Tarjan’s algorithm follows the steps that appear on pages 513–519 of

The Stanford GraphBase. The reader is referred to that book, which explains the procedure in terms of an
explorer who searches the rooms of a cave, for full details and proofs of correctness.
The algorithm uses five integer fields in each literal’s lmem record:

rank is initially 0, then positive, finally ∞, when l is respectively unseen, then active, finally settled.

parent points to a lower-ranked literal in the current oriented tree of active literals (or to 0 at the root),
when l is active; it points to the component representative when l is settled.

untagged tells how many of l’s successors haven’t been explored.

link is a link in the stack of active vertices or the stack of settled vertices.

min is Tarjan’s brilliant invention that makes everything work fast.

We add also a sixth field, vcomp , which is a component member of maximum rating.
Our instrumentation counts mems by assuming that rank and link are accessed simultaneously as an

octabyte, as are untagged and min , parent and vcomp .

⟨Determine the strong components; goto look bad if there’s a contradiction 104 ⟩ ≡
⟨Make all vertices unseen and all arcs untagged 106 ⟩;
for (i = 0; i < cands ; i++) {
o, l = poslit (cand [i].var );

check rank : if (o, lmem [l].rank ≡ 0) ⟨Perform a depth-first search with l as root, finding the strong
components of all vertices reachable from l 112 ⟩;

if ((l & 1) ≡ 0) {
l++; goto check rank ;

}
}
if (verbose & show strong comps ) ⟨Print the strong components 105 ⟩;

This code is used in section 87.
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105. ⟨Print the strong components 105 ⟩ ≡
{
fprintf (stderr , "Strong␣components:\n");
for (l = settled ; l; l = lmem [l].link ) {
fprintf (stderr , "␣"O"s"O".8s␣", litname (l));
if (lmem [l].parent ̸= l) fprintf (stderr , "with␣"O"s"O".8s\n", litname (lmem [l].parent ));
else {
if (lmem [l].vcomp ̸= l) fprintf (stderr , "−>␣"O"s"O".8s␣", litname (lmem [l].vcomp));
fprintf (stderr , ""O".4g\n", rating [thevar (lmem [l].vcomp)]);

}
}

}
This code is used in section 104.

106. Candidates are marked with bstamp here so that they can be distinguished from non-candidates.
Then we make a new copy of the bimp data, abbreviating it so that only the candidates are listed.
An arbitrary upper bound is placed on the total number of arcs in this reduced digraph, because perfect

accuracy is not important at this stage. The default limit, max prelook arcs = 10000, can be changed if
desired. Care is needed when we stick to such a limit, because we want the arc u → v to be present if and
only if its dual v̄ → ū is also present.

⟨Make all vertices unseen and all arcs untagged 106 ⟩ ≡
⟨Bump bstamp to a unique value 66 ⟩;
for (i = 0; i < cands ; i++) {
o, l = poslit (cand [i].var );
oo , lmem [l].rank = 0, lmem [l].arcs = −1, lmem [l].bstamp = bstamp ;
oo , lmem [l + 1].rank = 0, lmem [l + 1].arcs = −1, lmem [l + 1].bstamp = bstamp ;

}
⟨Copy all the relevant arcs to cand arc 110 ⟩;
for (i = 0; i < cands ; i++) {
o, l = poslit (cand [i].var );
oo , lmem [l].untagged = lmem [l].arcs ;
oo , lmem [l + 1].untagged = lmem [l + 1].arcs ;

}
k = 0; /∗ this is the number of vertices “seen” by Tarjan’s algorithm ∗/
active = settled = 0; /∗ the active and settled stacks are empty ∗/

This code is used in section 104.

107. ⟨Type definitions 5 ⟩ +≡
typedef struct arc struct {
uint tip ; /∗ the implied literal ∗/
int next ; /∗ next arc from the implier literal, or −1 ∗/

} arc;

108. ⟨Global variables 3* ⟩ +≡
arc ∗cand arc ; /∗ the arcs in a reduced digraph ∗/
int cand arc alloc ; /∗ how many arc slots have we used so far? ∗/
int active ; /∗ top of the linked stack of active vertices ∗/
int settled ; /∗ top of the linked stack of settled vertices ∗/
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109. The number of bytes used will be adjusted dynamically.

⟨Allocate special arrays 58 ⟩ +≡
max prelook arcs &= −2; /∗ make sure max prelook arcs is even ∗/
cand arc = (arc ∗) malloc(max prelook arcs ∗ sizeof (arc));
if (¬cand arc) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cand_arc␣array!\n");
exit (−10);

}

110. ⟨Copy all the relevant arcs to cand arc 110 ⟩ ≡
for (j = i = 0; i < cands ; i++) {
o, l = poslit (cand [i].var );
⟨Copy the arcs from l into the cand arc array 111 ⟩;
l++;
⟨Copy the arcs from l into the cand arc array 111 ⟩;

}
arcs done : if (j > cand arc alloc) /∗ we’ve copied more arcs than ever before ∗/

bytes += (j − cand arc alloc) ∗ sizeof (arc), cand arc alloc = j;

This code is used in section 106.

111. Beware: We reverse the ordering here, placing an arc u → v into cand arc when there’s an implication
v → u in the bimp table. This switcheroo will produce strong components in a more desirable order.

⟨Copy the arcs from l into the cand arc array 111 ⟩ ≡
for (oo , la = bimp [l].addr , ls = bimp [l].size , p = lmem [bar (l)].arcs ; ls ; la++, ls−−) {
o, u = mem [la ];
if (u < l) continue; /∗ we enter arcs in pairs, only when l < u ∗/
if (o, lmem [u].bstamp ̸= bstamp) continue; /∗ not a candidate ∗/

/∗ now l → u is an implication, and u > l ∗/
o, cand arc [j].tip = bar (u), cand arc [j].next = p, p = j; /∗ make arc l̄ → ū ∗/
oo , cand arc [j + 1].tip = l, cand arc [j + 1].next = lmem [u].arcs ;
o, lmem [u].arcs = j + 1, j += 2; /∗ make arc u → l ∗/
if (j ≡ max prelook arcs ) {

if (verbose & show details )
fprintf (stderr , "prelook␣arcs␣cut␣off␣at␣"O"d;␣see␣option␣z\n",max prelook arcs );

o, lmem [bar (l)].arcs = lmem [bar (l)].untagged = p;
goto arcs done ;

}
}
o, lmem [bar (l)].arcs = lmem [bar (l)].untagged = p;

This code is used in section 110.

112. ⟨Perform a depth-first search with l as root, finding the strong components of all vertices reachable
from l 112 ⟩ ≡

{
v = l;
o, lmem [l].parent = 0;
⟨Make vertex v active 113 ⟩;
do ⟨Explore one step from the current vertex v, possibly moving to another current vertex and calling

it v 114 ⟩ while (v > 0);
}

This code is used in section 104.
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113. ⟨Make vertex v active 113 ⟩ ≡
o, lmem [v].rank = ++k;
lmem [v].link = active , active = v;
o, lmem [v].min = v;

This code is used in sections 112 and 114.

114. Minor point: No mem is charged for setting lmem [v].min = u here, because lmem [v].untagged could
have been set at the same time.

⟨Explore one step from the current vertex v, possibly moving to another current vertex and calling
it v 114 ⟩ ≡

{
o, vv = lmem [v].untagged , ll = lmem [v].min ;
if (vv ≥ 0) { /∗ still more to explore from v ∗/
o, u = cand arc [vv ].tip , vv = cand arc [vv ].next ;
o, lmem [v].untagged = vv ;
o, j = lmem [u].rank ;
if (j) { /∗ we’ve seen u already ∗/
if (o, j < lmem [ll ].rank ) lmem [v].min = u; /∗ nontree arc, just update v’s min ∗/

} else { /∗ u is newly seen ∗/
lmem [u].parent = v; /∗ a new tree arc goes v → u ∗/
v = u; /∗ u will now be the current vertex ∗/
⟨Make vertex v active 113 ⟩;

}
} else { /∗ v becomes mature ∗/
o, u = lmem [v].parent ;
if (v ≡ ll ) ⟨Remove v and all its successors on the active stack from the tree, and mark them as a

strong component of the digraph 115 ⟩
else { /∗ the arc u → v has matured, making v’s min visible from u ∗/
if (ooo , lmem [ll ].rank < lmem [lmem [u].min ].rank ) o, lmem [u].min = ll ;

}
v = u; /∗ the former parent of v becomes the new current vertex v ∗/

}
}

This code is used in section 112.
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115. When v is the representative of a strong component, all vertices of that component henceforth regard
v as their parent.
If v represents the strong component of u and if w represents the strong component of bar (u), we won’t

always have w = bar (v). But we take pains to ensure that lmem [v].vcomp = bar (lmem [w].vcomp).

#define infty badlit

⟨Remove v and all its successors on the active stack from the tree, and mark them as a strong component
of the digraph 115 ⟩ ≡

{
float r, rr ;

t = active ;
o, r = rating [thevar (v)], w = v;
o, active = lmem [v].link ;
o, lmem [v].rank = infty ; /∗ settle v ∗/
lmem [v].link = settled , settled = t; /∗ move the component from active to settled ∗/
while (t ̸= v) {
if (t ≡ bar (v)) { /∗ component contains complementary literals ∗/

if (verbose & show gory details ) fprintf (stderr , "the␣binary␣clauses␣are␣inconsistent\n");
goto look bad ;

}
o, lmem [t].rank = infty ; /∗ now t is settled ∗/
o, lmem [t].parent = v; /∗ and its strong component is represented by v ∗/
o, rr = rating [thevar (t)];
if (rr > r) r = rr , w = t;
o, t = lmem [t].link ;

}
o, lmem [v].parent = v, lmem [v].vcomp = w; /∗ v represents itself ∗/
if (o, lmem [bar (v)].rank ≡ infty ) oo , lmem [v].vcomp = bar (lmem [lmem [bar (v)].parent ].vcomp);

}
This code is used in section 114.
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116. The lookahead forest. Now we come to what is probably the nicest part of this whole program,
an elegant mechanism by which much of the potential lookahead computation is avoided.
Suppose we’ve decided to look ahead on the consequences of literals l1, l2, . . . , ln, in that order. The

current binary implications tell us that, if lj is true, then also li must be true for certain i. If i < j, we’ve
already deduced the consequences of li, so we prefer not to do that again. On the other hand lj probably
doesn’t imply all of l1, . . . , li−1; so we want to be selective, to reuse only part of the information that we’ve
already discovered.
The stamping principle provides a way to do that. Suppose p1p2 . . . pn is a permutation of {1, . . . , n}, and

suppose we stamp true/false values at level pj when we are looking at consequences of lj . Then, when lj is
current, the value of a literal will be considered unknown if its stamp is less than pj , but it will be implied
by lj if it has been deduced by any of the previous literals li with i < j and pi > pj .
If, for example, n = 4 and p1p2p3p4 = 31 4 2, then l2 can assume all consequences of l1 (because p1 > p2);

and l4 can assume all of the consequences of l1 and l3, but not l2 (because p1 > p4 and p3 > p4 but p2 < p4).
This permutation captures the shortcuts that are legitimate when we have the implications l2 → l1, l4 → l1,
and l4 → l3.
A set of implications that can be defined by a permutation in this way is called a “permutation poset.”

When I first noticed this connection between permutation posets and stamping, I excitedly thought, “Aha!
Permutation posets are ideal for lookahead in a SAT solver.” Unfortunately, however, I soon learned that
lookahead is much more subtle than I’d realized, and I was compelled to abandon that optimistic sentiment;
my current thinking is, “Alas! Only a few permutation posets will work well for lookahead in a SAT solver.”
The example above, which is based on the notorious pi-mutation 3 1 4 2, illustrates the problem if we

examine it closely: When literal l3 is processed, we don’t want occurrences of l̄1 to be removed from the
current clauses, because l3 doesn’t imply l1. But when l4 is processed, we do want l̄1 to be suppressed, as
well as l̄3, because l4 → l1 and l4 → l3.

On the other hand the permutation 4 1 3 2 does lead to a good scenario. It corresponds to the dependencies
l2 → l1, l3 → l1, l4 → l3 (hence also l4 → l1). Now l3 can assume the consequences of l1 (but not l2), and
we can remove l̄1 from the clauses when we work on l3. Again l4 can assume the consequences of l1 and l3
(but not l2); and this time it’s convenient to remove l̄3 from the clauses that have already been purged of l̄1.
The point is that the purging of negative literals has the same implicit recursive structure as the visibility
of stamps.
The permutations that work properly are those that don’t contain a substring a b c with c < a < b (like the

substring 3 4 2 in 3 1 4 2). And such permutations are well known: They are the so-called stack permutations.
[See The Art of Computer Programming, exercise 2.2.1–5. Actually our permutations are the reverses or the
inverses of the stack permutations described there.] Moreover, they correspond precisely to dependencies
that form an oriented forest, and the correspondence is also well known and quite nice: “If u and v are nodes
of a forest, u is a proper ancestor of v if and only if u precedes v in preorder and u follows v in postorder”
[TAOCP exercise 2.3.2–20].

In general we’ve chosen candidate literals with certain known dependencies. We would like to find an
oriented forest, contained within those dependencies, having as many arcs as possible.

The task of finding the largest oriented forest contained in a given partially ordered set is probably NP-
complete. But two things make our task feasible in practice. First, the number of variables for which we
need to study dependencies is not very large, during the bulk of the calculations; it’s at most a few dozen,
except at shallow depth. Second, the dependencies aren’t usually extensive; at most ten or so variables are
in any connected component of the typical digraphs that arise. So we need only come up with a decent way
to handle small examples. It doesn’t matter if our subforests are crude in unusual cases.
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117. When the program below begins its work, we will have reduced the strong components of the
candidates’ digraph and placed the component representatives into topological order. That order isn’t
necessarily the one we seek for the oriented forest, but it facilitates the computations we need to do. We use
it to rank the literals in yet another way, this time by “height,” namely by the length of a longest path from
a source vertex. Then every literal u of height h > 0 has a predecessor vertex v of height h− 1. We will use
the oriented forest that is defined by those predecessor links—using the fact that v → u is an implication in
bimp [v] when u has an arc to v in the cand arc digraph.

⟨Construct a suitable forest 117 ⟩ ≡
⟨Find the heights and the child/sibling links 118 ⟩;
⟨Construct the look table 122 ⟩;

This code is used in section 87.

118. If u represents a strong component we will change lmem [u].untagged to a height value; and we’ll also
make lmem [u].min point to child of u in the forest being constructed. Those fields are therefore renamed
height and child , to reflect their new function. The link fields will also acquire a new significance, although
we’ll keep calling them link : They will point to siblings in the forest, namely to vertices with the same
parent.
The dummy literal 1 will play the role of a global root, whose children are all of the source vertices (the

vertices of height 0).

#define height untagged
#define child min
#define root 1

⟨Find the heights and the child/sibling links 118 ⟩ ≡
o, lmem [root ].child = 0, lmem [root ].height = −1, pp = root ;
for (u = settled ; u; u = uu ) {
oo , uu = lmem [u].link , p = lmem [u].parent ;
if (p ̸= pp) h = 0, w = root , pp = p; /∗ pp is previous strong component representative ∗/
for (o, j = lmem [bar (u)].arcs ; j ≥ 0; j = cand arc [j].next ) {

o, v = bar (cand arc [j].tip); /∗ we look at the predecessors v of u ∗/
o, vv = lmem [v].parent ;
if (vv ≡ p) continue; /∗ ignore an arc within the current component ∗/
o, hh = lmem [vv ].height ;
if (hh ≥ h) h = hh + 1, w = vv ;

}
if (p ≡ u) {
o, v = lmem [w].child ;
oo , lmem [u].height = h, lmem [u].child = 0, lmem [u].link = v;
o, lmem [w].child = u;

}
}

This code is used in section 117.
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119. The results of our oriented forest computation are placed into an array of ldata called look . The
lookahead process will examine literals look [0].lit , look [1].lit , . . . , look [looks − 1].lit , in that order; and the
current stamp while studying the implications of look [k].lit will be the even number base + look [k].offset ,
where base is the smallest stamp in the current iteration.
(Cognoscenti will understand that there is one entry in this array for each strong component that was

found in the implication digraph of candidates.)

⟨Type definitions 5 ⟩ +≡
typedef struct ldata struct {
uint lit ; /∗ a literal for lookahead ∗/
uint offset ; /∗ the offset of its stamp ∗/

} ldata;

120. ⟨Global variables 3* ⟩ +≡
ldata ∗look ; /∗ specification of the oriented forest for lookaheads ∗/
int looks ; /∗ the number of current entries in look ∗/

121. ⟨Allocate special arrays 58 ⟩ +≡
look = (ldata ∗) malloc(lits ∗ sizeof (ldata));
if (¬look ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣look␣array!\n");
exit (−10);

}
bytes += lits ∗ sizeof (ldata);

122. Here’s a standard “double order” traversal [TAOCP exercise 2.3.1–18] as we list the literals in preorder
while filling in their offsets according to postorder.
We’ve constructed the tree using literals that are representatives of the strong components produced by

Tarjan’s algorithm. But the lookahead process will use the vcomp representatives instead.

⟨Construct the look table 122 ⟩ ≡
o, u = lmem [root ].child , j = k = v = 0;
while (1) {
oo , look [k].lit = lmem [u].vcomp ;
o, lmem [u].rank = k++; /∗ k advances in preorder ∗/
if (o, lmem [u].child ) {
o, lmem [u].parent = v; /∗ fix parent temporarily for traversal ∗/
v = u, u = lmem [u].child ; /∗ descend to u’s descendants ∗/

} else {
post : o, i = lmem [u].rank ;
o, look [i].offset = j, j += 2; /∗ j advances in postorder ∗/
if (v) oo , lmem [u].parent = lmem [v].vcomp ; /∗ fix parent for lookahead ∗/
else o, lmem [u].parent = 0;
if (o, lmem [u].link ) u = lmem [u].link ; /∗ move to u’s next sibling ∗/
else if (v) {
o, u = v, v = lmem [u].parent ; /∗ after the last sibling, move to u’s parent ∗/
goto post ;

} else break;
}

}
looks = k;
if (j ̸= k + k) confusion ("looks");

This code is used in section 117.
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123*. Looking ahead. The lookahead process has much in common with what we do when making a
decision at a branch node, except that we don’t make drastic changes to the data structures. We don’t assign
any truth values at levels higher than proto truth ; and that level is reserved for literals that will be forced
true if the lookahead procedure finds no contradictions. We don’t create new binary implications when a
ternary clause gets a false literal; we estimate the potential benefit of such binary implications instead.
The literals that we want to study have been selected and placed in look by the prelookahead procedures

discussed above. We run through them repeatedly until making a full pass without finding any new forced
literals.

⟨Look ahead and gather data about how to make the next branch; but goto look bad if a contradiction
arises 123* ⟩ ≡

⟨Do the prelookahead 87 ⟩;
if (verbose & show looks ) {
fprintf (stderr , "Looks␣at␣level␣"O"d:\n", level );
for (i = 0; i < looks ; i++)

fprintf (stderr , "␣"O"s"O".8s␣"O"d\n", litname (look [i].lit ), look [i].offset );
}
fl = forcedlits , last change = −1, fptr = rptr ;
base = 2;
while (1) {
for (looki = 0; looki < looks ; looki ++) {
if (looki ≡ last change ) goto look done ;
o, l = look [looki ].lit , cs = base + look [looki ].offset ;
⟨Look ahead at consequences of l, and goto look bad if a conflict is found 126 ⟩;

look on : if (forcedlits > fl ) fl = forcedlits , last change = looki ;
}
if (last change ≡ −1) break;
base += 2 ∗ looks ; /∗ forget small truths ∗/
if (base + 2 ∗ looks ≥ proto truth ) break;

}
look done : cs = near truth ;
⟨Reset fptr by removing unfixed literals from rstack 161* ⟩;

This code is used in section 59.

124. The base keeps rising during a lookahead, never decreasing again. We had better use 64 bits for it,
so that overflow won’t be overlooked in large instances.

⟨Global variables 3* ⟩ +≡
ullng base , last base ; /∗ base address for stamps with offsets from look ∗/
uint ∗forcedlit ; /∗ array of forced literals ∗/
int forcedlits , fl ; /∗ the number of forced literals ∗/
int last change ; /∗ where in the array did we last make progress? ∗/
int looki ; /∗ index of our position in look ∗/
uint looklit ; /∗ the literal whose consequences we are exploring ∗/
uint old looklit ; /∗ the literal whose consequences we were exploring ∗/
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125. Again we want a fast way to make literals “snap into place” when they’re directly implied by an
assumption that we’re making.
Here we clone the former binary propagation loop for purposes of lookahead: Instead of going to conflict

if a contradiction arises, we go to contra , because the contradiction of a tentative assumption does not
necessarily imply a real conflict.
Although the lookahead algorithms use rstack for breadth-first search, they never change rptr , nor do

they fix any literals at more than the proto truth level.

⟨Propagate binary lookahead implications of l; goto contra if a contradiction arises 125 ⟩ ≡
if (isfixed (l)) {
if (iscontrary (l)) goto contra ;

} else {
if (verbose & show gory details ) {
if (cs ≥ proto truth ) fprintf (stderr , "protofixing␣"O"s"O".8s\n", litname (l));
else fprintf (stderr , ""O"dfixing␣"O"s"O".8s\n", cs , litname (l));

}
stamptrue (l);
lfptr = eptr ;
o, rstack [eptr ++] = l;
while (lfptr < eptr ) {

o, l = rstack [lfptr ++];
for (o, la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) {

o, lp = mem [la ];
if (isfixed (lp)) {
if (iscontrary (lp)) goto contra ;

} else {
if (verbose & show gory details ) {
if (cs ≥ proto truth ) fprintf (stderr , "␣protofixing␣"O"s"O".8s\n", litname (lp));
else fprintf (stderr , "␣"O"dfixing␣"O"s"O".8s\n", cs , litname (lp));

}
stamptrue (lp);
o, rstack [eptr ++] = lp ;

}
}

}
}

This code is used in sections 132* and 135*.
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126. An example will make it easier to visualize the current context. Suppose the relevant binary clauses
are (b̄ ∨ a) ∧ (c̄ ∨ a) ∧ (d̄ ∨ c). Then the look array might contain the sequence b̄, a, b, c, d, d̄, c̄, ā, with
respective offsets 0, 8, 2, 6, 4, 14, 12, 10. The parent of c is then a; the parent of d is c; the parent of c̄ is d̄;
the parent of ā is c̄; and a, b̄, d̄ are roots with no parent.

⟨Look ahead at consequences of l, and goto look bad if a conflict is found 126 ⟩ ≡
looklit = l;
o, ll = lmem [looklit ].parent ;
if (ll ) oo , lmem [looklit ].wnb = lmem [ll ].wnb ; /∗ inherit from parent ∗/
else o, lmem [l].wnb = 0.0;
if (verbose & show gory details )
fprintf (stderr , "looking␣at␣"O"s"O".8s␣("O"d)\n", litname (looklit ), cs );

if (isfixed (l)) {
if (iscontrary (l) ∧ stamp [thevar (l)] < proto truth )

⟨Force looklit to be (proto) false, and complement it 129 ⟩;
} else {
⟨Update lookahead data structures for consequences of looklit ; but goto contra if a contradiction

arises 132* ⟩;
if (weighted new binaries ≡ 0) ⟨Exploit an autarky 127 ⟩
else o, lmem [looklit ].wnb += weighted new binaries ;
⟨Do a double lookahead from looklit , if that seems advisable 142 ⟩;
⟨Check for necessary assignments 139 ⟩;

}
This code is used in section 123*.

127. Here we implement an extension of the classical “pure literal” rule: We have just looked at all
the consequences obtainable by repeated propagation of unit clauses when looklit is assumed to be true,
and we’ve found no contradiction. Suppose we’ve also discovered no “new weighted binaries”; this means
that, whenever we have reduced a clause from size s to size s′ < s during this process, the reduced size
s′ is 1. (For if s′ = 0 we would have had a contradiction, while if 1 < s′ < s we would have increased
new weighted binaries .)
In such a case, the set of literals deducible from looklit is said to form an autarky, and we are allowed

to assume that looklit is true. Indeed, those literals {l1, . . . , lk} satisfy every clause that contains either li
or l̄i for any i. If the remaining “untouched” clauses are satisfiable, we can satisfy all the clauses by using
{l1, . . . , lk} in the clauses that are touched; and if we can satisfy all the clauses, we can certainly satisfy the
untouched ones.
(I learned this trick in January 2013 from Marijn Heule.)

⟨Exploit an autarky 127 ⟩ ≡
{
if (lmem [looklit ].wnb ≡ 0) {
if (verbose & show gory details ) fprintf (stderr , "␣autarky␣at␣"O"s"O".8s\n", litname (looklit ));
looklit = bar (looklit ); /∗ complement looklit temporarily ∗/
⟨Force looklit to be (proto) false, and complement it 129 ⟩;

} else {
ll = lmem [looklit ].parent ;
if (verbose & show gory details )
fprintf (stderr , "␣autarky␣"O"s"O".8s␣−>␣"O"s"O".8s\n", litname (ll ), litname (looklit ));

⟨Make ll equivalent to looklit 128* ⟩;
}

}
This code is used in section 126.
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128*. Furthermore, if lmem [looklit ].wnb is nonzero, we know that we set it to lmem [ll ].wnb where ll is the
parent of looklit . In that case, if the assertion of looklit gives no new weighted new binaries in addition to
those obtained from ll , the variables deducible from looklit are an autarky with respect to the set of clauses
that are reduced by ll ; so we are allowed to assume that looklit itself is implied by ll . (Think about it.) In
other words, adding the additional clause ¬ll ∨ looklit does not make the set of clauses any less satisfiable.

This additional clause is special, because it cannot in general be derived by resolution.
We already have the clause ¬looklit ∨ ll , because ll is the parent of looklit . Thus we can conclude that

both literals are equivalent in this case.
We aren’t allowed to upgrade the stamp value of looklit to the stamp value of ll , because that would

violate an important invariant relation: Our mechanism for undoing virtual changes to large clauses requires
that the literals in rstack have monotonically decreasing levels of truth.

⟨Make ll equivalent to looklit 128* ⟩ ≡
{
u = bar (ll );
o, au = bimp [ll ].addr , su = bimp [ll ].size ;
⟨Make sure that bar (u) has an istack entry 74 ⟩;
if (o, su ≡ bimp [ll ].alloc) resize (ll ), o, au = bimp [ll ].addr ;
oo ,mem [au + su ] = looklit , bimp [ll ].size = su + 1;
u = looklit ;
o, au = bimp [bar (u)].addr , su = bimp [bar (u)].size ;
⟨Make sure that bar (u) has an istack entry 74 ⟩;
if (o, su ≡ bimp [bar (u)].alloc) resize (bar (u)), o, au = bimp [bar (u)].addr ;
oo ,mem [au + su ] = bar (ll ), bimp [bar (u)].size = su + 1;

}
This code is used in section 127.

129. ⟨Force looklit to be (proto) false, and complement it 129 ⟩ ≡
{
looklit = bar (looklit );
forcedlit [forcedlits++] = looklit ;
look cs = cs , cs = proto truth ;
⟨Update lookahead data structures for consequences of looklit ; but goto contra if a contradiction

arises 132* ⟩;
cs = look cs ;

}
This code is used in sections 126, 127, 130*, and 139.

130*. When we get to label contra , we execute the following instructions, which will “fall through” to label
look bad if cs = proto truth .
Roughly speaking, we’ve derived a contradiction after assuming that looklit is true. When that assumption

fails, we make looklit proto-false. A second failure at the proto-false level is a real conflict, and it will require
backtracking.

⟨Recover from a lookahead contradiction 130* ⟩ ≡
if (cs < proto truth ) {
⟨Force looklit to be (proto) false, and complement it 129 ⟩;
goto look on ;

}
cs = near truth ;
⟨Reset fptr by removing unfixed literals from rstack 161* ⟩;

This code is used in section 84.
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131*. A new breadth-first search is launched here, as we assert looklit at truth level cs and derive the
ramifications of that assertion. If, for example, cs = 50, we will make looklit (and all other literals that it
implies) true at level 50, unless they’re already true at levels 52 or above.

132*. We’ve implicitly removed bar (looklit ) from all of the active clauses. Now we must put it back, if its
truth value was set at a lower level than cs .
The consequences of looklit might include “windfalls,” which are unfixed literals that are the only survivors

of a clause whose other literals have become false. Windfalls will be placed on the wstack , which is cleared
here.

⟨Update lookahead data structures for consequences of looklit ; but goto contra if a contradiction
arises 132* ⟩ ≡

⟨Reset fptr by removing unfixed literals from rstack 161* ⟩;
wptr = 0; eptr = fptr ;
weighted new binaries = 0;
l = looklit ;
⟨Propagate binary lookahead implications of l; goto contra if a contradiction arises 125 ⟩;
while (fptr < eptr ) {
o, ll = rstack [fptr ++];
⟨Update lookahead data structures for the truth of ll ; but goto contra if a contradiction arises 135* ⟩;

}
⟨Convert the windfalls to binary implications from looklit 137 ⟩;

This code is used in sections 126 and 129.

133. ⟨Global variables 3* ⟩ +≡
uint ∗wstack ; /∗ place to store windfalls that result from looklit ∗/
int wptr ; /∗ the number of entries currently in wstack ∗/
float weighted new binaries ; /∗ total weight of binaries that we uncover ∗/

134. ⟨Allocate special arrays 58 ⟩ +≡
wstack = (uint ∗) malloc(lits ∗ sizeof (uint));
if (¬wstack ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣wstack␣array!\n");
exit (−10);

}
bytes += lits ∗ sizeof (uint);
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135*. Windfalls and the weighted potentials for new binaries are discovered here, as we “virtually remove”
bar (ll ) from the active clauses in which it appears.
If all but one of the literals in such a clause has now been fixed false at the current level, we put the

remaining one on bstack for subsequent analysis.
A conflict arises if all literals are fixed false. In such cases we set bptr = −1 instead of going immediately

to contra ; otherwise backtracking would be more complicated.

⟨Update lookahead data structures for the truth of ll ; but goto contra if a contradiction arises 135* ⟩ ≡
bptr = 0;
if (verbose & show gory details ) fprintf (stderr , "␣("O"s"O".8s␣lookout)\n", litname (bar (ll )));
for (o, tla = kinx [bar (ll )].addr , tls = kinx [bar (ll )].size ; tls ; tla++, tls−−) {
o, c = kmem [tla ];
o, la = cinx [c].addr , ls = cinx [c].size − 1;
o, cinx [c].size = ls ;
if (ls ≥ 2) weighted new binaries += clause weight [ls ];
else if (bptr ≥ 0) ⟨Put the remaining literal of c into bstack 136* ⟩;

}
if (bptr < 0) goto contra ;
while (bptr ) {
o, u = bstack [−−bptr ].u;
if (isfixed (u)) {
if (iscontrary (u)) goto contra ;

} else {
wstack [wptr ++] = l = u;
⟨Propagate binary lookahead implications of l; goto contra if a contradiction arises 125 ⟩;

}
}

This code is used in section 132*.

136*. The remaining literal may have become fixed, but not yet virtually removed (because it lies between
fptr and eptr on rstack ).

⟨Put the remaining literal of c into bstack 136* ⟩ ≡
{
for (o, ua = cinx [c− 1].addr ; la < ua ; la++) {
o, u = cmem [la ];
if (¬isfixed (u)) break;
if (iscontrary (u)) continue;
u = 0; break; /∗ c is satisfied ∗/

}
if (la ≡ ua ) {
bptr = −1;
if (verbose & show gory details )

fprintf (stderr , "␣␣looking␣"O"s"O".8s−>␣["O"d]\n", litname (ll ), c);
} else if (u) {

o, bstack [bptr ++].u = u;
if (verbose & show gory details )
fprintf (stderr , "␣␣looking␣"O"s"O".8s−>"O"s"O".8s␣["O"d]\n", litname (ll ), litname (u), c);

}
}

This code is used in section 135*.
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137. Windfalls are analogous to the compensation resolvents we saw before.

⟨Convert the windfalls to binary implications from looklit 137 ⟩ ≡
if (wptr ) {
oo , sl = bimp [looklit ].size , ls = bimp [looklit ].alloc ;
⟨Make sure that looklit has an istack entry 138 ⟩;
while (sl + wptr > ls ) resize (looklit ), ls ≪= 1;
o, bimp [looklit ].size = sl + wptr ;
for (o, la = bimp [looklit ].addr + sl ; wptr ; wptr −−) {
o, u = wstack [wptr − 1];
o,mem [la++] = u;
if (verbose & show gory details )
fprintf (stderr , "␣windfall␣"O"s"O".8s−>"O"s"O".8s\n", litname (looklit ), litname (u));

o, au = bimp [bar (u)].addr , su = bimp [bar (u)].size ;
⟨Make sure that bar (u) has an istack entry 74 ⟩;
if (o, su ≡ bimp [bar (u)].alloc) resize (bar (u)), o, au = bimp [bar (u)].addr ;
o,mem [au + su ] = bar (looklit );
o, bimp [bar (u)].size = su + 1;

}
}

This code is used in sections 132* and 143*.

138. ⟨Make sure that looklit has an istack entry 138 ⟩ ≡
if (o, lmem [looklit ].istamp ̸= istamp) {
o, lmem [looklit ].istamp = istamp ;
o, istack [iptr ].lit = looklit , istack [iptr ].size = sl ;
⟨ Increase iptr 75 ⟩;

}
This code is used in section 137.

139. Let l = looklit . If our assumption that l is true has allowed us to conclude the truth of some other
literal l′, but only at a level less than proto truth , we are allowed to promote this to proto truth if we also
have l̄ → l′. If we’re lucky, that promotion will also trigger more consequences that we didn’t have to discover
the hard way.

⟨Check for necessary assignments 139 ⟩ ≡
old looklit = looklit ;
for (o, ola = bimp [bar (looklit )].addr , ols = bimp [bar (looklit )].size ; ols ; ols−−) {
o, looklit = bar (mem [ola + ols − 1]);
if ((isfixed (looklit )) ∧ (stamp [thevar (looklit )] < proto truth ) ∧ iscontrary (looklit )) {

if (verbose & show gory details )
fprintf (stderr , "␣necessary␣"O"s"O".8s\n", litname (bar (looklit )));

⟨Force looklit to be (proto) false, and complement it 129 ⟩;
o, ola = bimp [bar (old looklit )].addr ; /∗ guard against a change in ola ∗/

}
}

This code is used in section 126.
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140. Now we’re ready to select bestlit , representing our guess about the best literal on which to branch.
(More precisely, thevar (bestlit ) is the variable on which we shall branch. First we will try to make bestlit

true. If that fails, we’ll try to make it false. And if that fails, we’ll backtrack to a previous node.)
The lookahead process might have identified forced literals that force the value of every variable for which

we have wnb scores. If so, those literals are no longer free; they are true at the real truth level. And if one of
them would have been our choice for bestlit , we set bestlit to zero because we ought to do another lookahead
before branching.
We might in fact be lucky: If freevars is zero, the clauses have been satisfied.

⟨Choose bestlit , which will be the next branch tried 140 ⟩ ≡
{
float best score ;

if (freevars ≡ 0) goto satisfied ;
for (i = 0, best score = −1.0, bestlit = 0; i < looks ; i++) {
o, l = look [i].lit ;
if ((l & 1) ≡ 0) {

float pos , neg , score ;

oo , pos = lmem [l].wnb ,neg = lmem [l + 1].wnb ;
score = (pos + .1) ∗ (neg + .1);
if (verbose & show gory details ) fprintf (stderr , "␣"O".8s,␣"O".4g:"O".4g␣("O".4g)\n",

vmem [thevar (l)].name .ch8 , pos ,neg , score );
if (score > best score ) {
best score = score ;
bestlit = (pos > neg ? l + 1 : l);

}
}

}
if (¬isfree (bestlit )) bestlit = 0;
if (bestlit + forcedlits ≡ 0) confusion ("choice");

}
This code is used in section 59.
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141. Double-looking ahead. Sometimes we really go out on a limb and look ahead two steps before
making a decision. The goal of such a second look is to detect a branch that dies off early, resulting in a
forced literal l̄ when looking at sufficiently many consequences of l.

Of course an extra degree of looking takes time, and we don’t want to do it if the extra time isn’t recouped
by a better branching strategy. Here I use an elegant feedback technique of Heule and van Maaren [Lecture
Notes in Computer Science 4501 (2007), 258–271], which responds adaptively to the conditions of a given
problem: A “trigger” starts at zero and increases when doublelook is unsuccessful, but decreases slightly
after each lookahead.
Double-lookahead has a weaker level of trustworthiness than proto truth . It is the dynamically specified

level dl truth , at the top of a region of stamp space that allows for a maximum number of permitted iterations.
That maximum number, dl max iter , is 8 by default, but of course users are allowed to fiddle with it to
their hearts’ content. Literals that are true at level dl truth are conditionally true under the hypothesis that
looklit is true.

⟨Global variables 3* ⟩ +≡
float dl trigger ; /∗ lower bound to adjust the frequency of double-looking ∗/
uint dl truth ; /∗ the doublelook analog of proto truth ∗/
int dlooki ; /∗ the doublelook analog of looki ∗/
uint dlooklit ; /∗ the doublelook analog of looklit ∗/
uint dl last change ; /∗ the last literal for which we forced some dl truth ∗/

142. ⟨Do a double lookahead from looklit , if that seems advisable 142 ⟩ ≡
if (level ∧ (o, lmem [looklit ].dl fail ≠ istamp)) {
if (lmem [looklit ].wnb > dl trigger ) {

if (cs + 2 ∗ looks ∗ ((ullng) dl max iter + 1) < proto truth ) {
⟨Double look ahead from looklit ; goto contra if a contradiction arises 143* ⟩;
o, dl trigger = lmem [looklit ].wnb ;
/∗ increase the trigger, to discourage improbable double-looks ∗/

o, lmem [looklit ].dl fail = istamp ; /∗ don’t try this literal again at this branch node ∗/
}

} else dl trigger ∗= dl rho ; /∗ decrease the trigger slightly, so that it we’ll eventually try again ∗/
}

This code is used in section 126.
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143*. The new settings of base , last base , and dl truth in this step are slightly subtle: On the first iteration,
some literals may be fixed true (stampwise) because of information gained before we’ve started to doublelook,
but only if they are implied by looklit . Those literals will be promoted to truth at level dl truth during the
course of that iteration, because a contradiction will arise when we try to set them false. On subsequent
iterations, and after doublelook finishes its work, the only existing level of truth that is ≥ base and <
proto truth will be dl truth .

The propagation loop invoked here gets the ball rolling by making all binary implications of looklit true
at level dl truth . It will not actually goto dl contra in spite of what it says; we have simply copied the more
general code into this section for convenience, because such optimization isn’t necessary at this point.
“Windfalls” during a doublelook are different from those we saw before: They now are literals that were

forced to be true as a consequence of looklit .

⟨Double look ahead from looklit ; goto contra if a contradiction arises 143* ⟩ ≡
last base = cs + 2 ∗ looks ∗ dl max iter ;
dl truth = last base + cs − base ;
base = cs ;
cs = dl truth , l = looklit , dlooklit = l;
wptr = 0;
⟨Update dlookahead data structures for consequences of dlooklit ; but goto dl contra if a contradiction

arises 149* ⟩;
⟨Run through iterations of doublelook analogous to the iterations of ordinary lookahead 144* ⟩;
⟨Convert the windfalls to binary implications from looklit 137 ⟩;

This code is used in section 142.

144*. The code here and in the following sections parallels the corresponding routines in lookahead and in
the basic solver, but at an even hazier and more tentative level—further removed from reality.

⟨Run through iterations of doublelook analogous to the iterations of ordinary lookahead 144* ⟩ ≡
dl last change = 0;
while (1) {
for (dlooki = 0; dlooki < looks ; dlooki ++) {
o, l = look [dlooki ].lit , cs = base + look [dlooki ].offset ;
if (l ≡ dl last change ) goto dlook done ;
⟨Doublelook ahead at consequences of l, and goto contra if a contradiction is found 146 ⟩;

dlook on : continue;
}
if (dl last change ≡ 0) break;
base += 2 ∗ looks ; /∗ forget small truths ∗/
if (base ≡ last base ) break;

}
dlook done : base = last base , cs = dl truth ; /∗ retain only dl truth data ∗/
⟨Reset the doublelook fptr by removing unfixed literals from rstack 162* ⟩;

This code is used in section 143*.
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145. ⟨Propagate binary doublelookahead implications of l 145 ⟩ ≡
if (isfixed (l)) {
if (iscontrary (l)) goto dl contra ;

} else {
if (verbose & show doubly gory details ) {

if (cs ≥ dl truth ) fprintf (stderr , "dlfixing␣"O"s"O".8s\n", litname (l));
else fprintf (stderr , ""O"dfixing␣"O"s"O".8s\n", cs , litname (l));

}
stamptrue (l);
lfptr = eptr ;
o, rstack [eptr ++] = l;
while (lfptr < eptr ) {

o, l = rstack [lfptr ++];
for (o, la = bimp [l].addr , ls = bimp [l].size ; ls ; la++, ls−−) {

o, lp = mem [la ];
if (isfixed (lp)) {
if (iscontrary (lp)) goto dl contra ;

} else {
if (verbose & show doubly gory details ) {

if (cs ≥ dl truth ) fprintf (stderr , "␣dlfixing␣"O"s"O".8s\n", litname (lp));
else fprintf (stderr , "␣"O"dfixing␣"O"s"O".8s\n", cs , litname (lp));

}
stamptrue (lp);
o, rstack [eptr ++] = lp ;

}
}

}
}

This code is used in sections 149* and 150*.

146. ⟨Doublelook ahead at consequences of l, and goto contra if a contradiction is found 146 ⟩ ≡
dlooklit = l;
if (verbose & show doubly gory details )
fprintf (stderr , "dlooking␣at␣"O"s"O".8s␣("O"d)\n", litname (dlooklit ), cs );

if (isfixed (l)) {
if (stamp [thevar (l)] < dl truth ∧ iscontrary (l)) ⟨Force dlooklit to be (dl) false, and complement it 147 ⟩;

} else {
⟨Update dlookahead data structures for consequences of dlooklit ; but goto dl contra if a contradiction

arises 149* ⟩;
}

This code is used in section 144*.
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147. The variable dl last change , which keeps us doublelooking, changes only here.

⟨Force dlooklit to be (dl) false, and complement it 147 ⟩ ≡
{
dl last change = dlooklit ;
dlooklit = bar (dlooklit );
dlook cs = cs , cs = dl truth ;
⟨Update dlookahead data structures for consequences of dlooklit ; but goto dl contra if a contradiction

arises 149* ⟩;
cs = dlook cs ;
wstack [wptr ++] = dlooklit ;

}
This code is used in sections 146 and 148.

148. When we get to label dl contra , we execute the following instructions, which will “fall through” to
label contra if cs = dl truth .
Roughly speaking, we’ve derived a contradiction after assuming that looklit and dlooklit are true. When

that second assumption fails, we make dlooklit dl-false, assuming looklit . A second failure at the dl-false
level tells us that looklit must be false; in such a case we exit the double lookahead process.

⟨Recover from a double lookahead contradiction 148 ⟩ ≡
if (cs < dl truth ) {
⟨Force dlooklit to be (dl) false, and complement it 147 ⟩;
goto dlook on ;

}
base = last base ; /∗ forget all truths less than dl truth ∗/

This code is used in section 84.

149*. ⟨Update dlookahead data structures for consequences of dlooklit ; but goto dl contra if a
contradiction arises 149* ⟩ ≡

⟨Reset the doublelook fptr by removing unfixed literals from rstack 162* ⟩;
eptr = fptr ;
l = dlooklit ;
⟨Propagate binary doublelookahead implications of l 145 ⟩;
while (fptr < eptr ) {
o, ll = rstack [fptr ++];
⟨Update dlookahead data structures for the truth of ll ; but goto dl contra if a contradiction

arises 150* ⟩;
}

This code is used in sections 143*, 146, and 147.
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150*. ⟨Update dlookahead data structures for the truth of ll ; but goto dl contra if a contradiction
arises 150* ⟩ ≡

bptr = 0;
if (verbose & show doubly gory details )
fprintf (stderr , "␣("O"s"O".8s␣dlookout)\n", litname (bar (ll )));

for (o, tla = kinx [bar (ll )].addr , tls = kinx [bar (ll )].size ; tls ; tla++, tls−−) {
o, c = kmem [tla ];
o, la = cinx [c].addr , ls = cinx [c].size − 1;
o, cinx [c].size = ls ;
if (ls < 2 ∧ bptr ≥ 0) ⟨Put the remaining doublelook literal of c into bstack 151* ⟩;

}
if (bptr < 0) goto dl contra ;
while (bptr ) {
o, u = bstack [−−bptr ].u;
if (isfixed (u)) {
if (iscontrary (u)) goto dl contra ;

} else {
l = u;
⟨Propagate binary doublelookahead implications of l 145 ⟩;

}
}

This code is used in section 149*.

151*. ⟨Put the remaining doublelook literal of c into bstack 151* ⟩ ≡
{
for (o, ua = cinx [c− 1].addr ; la < ua ; la++) {
o, u = cmem [la ];
if (¬isfixed (u)) break;
if (iscontrary (u)) continue;
u = 0; break; /∗ c is satisfied ∗/

}
if (la ≡ ua ) {
bptr = −1;
if (verbose & show doubly gory details )
fprintf (stderr , "␣␣dlooking␣"O"s"O".8s−>␣["O"d]\n", litname (ll ), c);

} else if (u) {
o, bstack [bptr ++].u = u;
if (verbose & show doubly gory details )
fprintf (stderr , "␣␣dlooking␣"O"s"O".8s−>"O"s"O".8s␣["O"d]\n", litname (ll ), litname (u), c);

}
}

This code is used in section 150*.
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152*. Doing it. Finally we just need to put the pieces of this program together.

⟨Solve the problem 152* ⟩ ≡
if (verbose & show big clauses ) ⟨Print all the big clauses to stderr 155* ⟩;
level = 0;
if (forcedlits ) {
o,nstack [0].branch = −1;
goto special start ; /∗ bootstrap the unary input clauses ∗/

}
enter level :

if (sanity checking ) sanity ( );
⟨Begin the processing of a new node 59 ⟩;
forcedlits = 0;
level ++;
goto enter level ;
⟨Recover from conflicts 84 ⟩;

This code is used in section 2*.

153. ⟨Print the solution found 153 ⟩ ≡
for (k = 0; k < rptr ; k++) {
printf ("␣"O"s"O".8s", litname (rstack [k]));
if (out file ) fprintf (out file , "␣"O"s"O".8s", litname (bar (rstack [k])));

}
printf ("\n");
if (freevars ) {
if (verbose & show unused vars ) printf ("(Unused:");
for (k = 0; k < freevars ; k++) {
if (verbose & show unused vars ) printf ("␣"O".8s", vmem [freevar [k]].name .ch8 );
if (out file ) fprintf (out file , "␣"O".8s", vmem [freevar [k]].name .ch8 );

}
if (verbose & show unused vars ) printf (")\n");

}
if (out file ) fprintf (out file , "\n");

This code is used in section 84.

154. ⟨Subroutines 29 ⟩ +≡
void confusion (char ∗id )
{ /∗ an assertion has failed ∗/
fprintf (stderr , "This␣can’t␣happen␣("O"s)!\n", id );
exit (−666);

}
void debugstop(int foo)
{ /∗ can be inserted as a special breakpoint ∗/
fprintf (stderr , "You␣rang("O"d)?\n", foo);

}
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155*. New material for big clauses. Some of the details about big-clause processing have been
postponed to this addendum, in order to keep the section numbering of SAT11 and SAT11K essentially
identical.

⟨Print all the big clauses to stderr 155* ⟩ ≡
for (c = 1; c ≤ bclauses ; c++) {
fprintf (stderr , ""O"d:", c); /∗ show the reference number to the user ∗/
for (la = cinx [c].addr ; la < cinx [c− 1].addr ; la++)
fprintf (stderr , "␣"O"s"O".8s", litname (cmem [la ]));

fprintf (stderr , "\n");
}

This code is used in section 152*.

156*. Here I move the remaining free literals to the left of their clauses, if at most θk of the original k
literals are now free. This parameter θ can be tuned by the user, as an integer multiple of 1/64; I’m trying
θ = 25/64 as a default.

⟨Swap out all big clauses that contain ll 156* ⟩ ≡
for (o, tla = kinx [ll ].addr , tls = kinx [ll ].size ; tls ; tla++, tls−−) {
o, c = kmem [tla ];
o, cia = cinx [c].addr , cis = cinx [c].size ;
o, kk = cinx [c− 1].addr − cia ; /∗ the original size of clause c ∗/
cis−−; /∗ this many free literals remain ∗/
if (cis ≤ (theta64 ∗ kk ) ≫ 6) ⟨Swap c out while gathering its free literals 157* ⟩
else
for ( ; cis ; cia++) {

o, u = cmem [cia ];
if (isfree (u)) {
⟨Swap c out of u’s clause list 158* ⟩;
cis−−;

}
}

}
This code is used in section 69*.

157*. ⟨Swap c out while gathering its free literals 157* ⟩ ≡
{
for (ci = cia ; cis ; cia++) {

o, u = cmem [cia ];
if (isfree (u)) {

if (ci ̸= cia ) ooo , v = cmem [ci ], cmem [ci ] = u, cmem [cia ] = v;
⟨Swap c out of u’s clause list 158* ⟩;
ci ++, cis−−;

}
}

}
This code is used in section 156*.
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158*. ⟨Swap c out of u’s clause list 158* ⟩ ≡
{
for (o, su = kinx [u].size − 1, au = ua = kinx [u].addr + su ; o, kmem [au ] ̸= c; au−−) ;
if (au ̸= ua ) oo , kmem [au ] = kmem [ua ], kmem [ua ] = c;
o, kinx [u].size = su ;

}
This code is used in sections 71*, 156*, and 157*.

159*. ⟨Swap in all big clauses that contain ll 159* ⟩ ≡
for (o, tls = kinx [ll ].size , tla = kinx [ll ].addr + tls − 1; tls ; tla−−, tls−−) {
o, c = kmem [tla ];
for (o, cia = cinx [c].addr , cis = cinx [c].size − 1; cis ; cia++) {
o, u = cmem [cia ];
if (isfree (u)) {

⟨Swap c back in to u’s clause list 160* ⟩;
cis−−;

}
}

}
This code is used in section 82*.

160*. ⟨Swap c back in to u’s clause list 160* ⟩ ≡
oo , kinx [u].size++;

This code is used in sections 83* and 159*.

161*. The lookahead processes need to take back all updates to big clauses involving literals that lose their
tentative values when cs increases.

Fortunately all literals are ordered on rstack by their truth levels, with the lowest levels nearest the top.
This is the place where the partial ordering of the “lookahead forest” must indeed be a forest, not a general

permutation poset.

⟨Reset fptr by removing unfixed literals from rstack 161* ⟩ ≡
while (fptr > rptr ) {
o, u = rstack [fptr − 1];
if (isfixed (u)) break;
fptr −−;
if (verbose & show gory details ) fprintf (stderr , "␣("O"s"O".8s␣lookin)\n", litname (bar (u)));
⟨Unreduce all big clauses that contained bar (u) during lookahead 163* ⟩;

}
This code is used in sections 123*, 130*, and 132*.

162*. ⟨Reset the doublelook fptr by removing unfixed literals from rstack 162* ⟩ ≡
while (fptr > rptr ) {
o, u = rstack [fptr − 1];
if (isfixed (u)) break;
fptr −−;
if (verbose & show doubly gory details )
fprintf (stderr , "␣("O"s"O".8s␣dlookin)\n", litname (bar (u)));

⟨Unreduce all big clauses that contained bar (u) during lookahead 163* ⟩;
}

This code is used in sections 144* and 149*.



72 NEW MATERIAL FOR BIG CLAUSES SAT11K §163

163*. ⟨Unreduce all big clauses that contained bar (u) during lookahead 163* ⟩ ≡
for (o, tls = kinx [bar (u)].size , tla = kinx [bar (u)].addr + tls − 1; tls ; tla−−, tls−−) {
o, c = kmem [tla ];
o, cis = cinx [c].size + 1;
o, cinx [c].size = cis ;

}
This code is used in sections 161* and 162*.

164*. This program uses the clause weight table to estimate a clause’s potential for further reduction, based
solely on its length: A clause of length k ≥ 2 gets the weight γk−2, where the parameter γ is controllable
by ‘g’ on the command line. The default γ = 0.21 agrees roughly with the recommendations of Oliver
Kullmann.

⟨Global variables 3* ⟩ +≡
int max clause ; /∗ length of the longest clause ∗/
float ∗clause weight ; /∗ weights given to each length, for k ≥ 2 ∗/

165*. We dare not let the clause weight entries become zero, because that would defeat the logic by which
autarkies are recognized.

⟨Allocate special arrays 58 ⟩ +≡
clause weight = (float ∗) malloc(max clause ∗ sizeof (float));
if (¬clause weight ) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣clause_weight␣array!\n");
exit (−10);

}
bytes += max clause ∗ sizeof (float);
clause weight [2] = 1.0;
for (k = 3; k < max clause ; k++) o, clause weight [k] = clause weight [k − 1] ∗ gamm + 0.01;
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166*. Index.

The following sections were changed by the change file: 1, 2, 3, 4, 7, 11, 24, 25, 27, 30, 31, 32, 38, 40, 41, 42, 44, 45, 68, 69,

71, 72, 82, 83, 86, 91, 92, 93, 94, 95, 96, 97, 100, 123, 128, 130, 131, 132, 135, 136, 143, 144, 149, 150, 151, 152, 155, 156,

157, 158, 159, 160, 161, 162, 163, 164, 165, 166.

a: 50.
aa : 2*.
acc : 93*.
active : 106, 108, 113, 115.
addr : 26, 27*, 29, 30*, 32*, 40*, 41*, 42*, 43, 44*, 49,

50, 51, 53, 57, 68*, 71*, 73, 76, 79, 82*, 83*, 93*,
100*, 111, 125, 128*, 135*, 136*, 137, 139, 145,
150*, 151*, 155*, 156*, 158*, 159*, 163*.

alloc : 26, 43, 49, 50, 57, 73, 76, 79, 128*, 137.
alpha : 3*, 4*, 93*.
arc: 107, 108, 109, 110.
arc struct: 107.
arcs : 34, 106, 111, 118.
arcs done : 110, 111.
argc : 2*, 4*.
argv : 2*, 4*.
au : 2*, 71*, 73, 76, 128*, 137, 158*.
av : 2*, 73, 79.
avail : 48, 49, 54, 55, 56, 57.
aw : 2*, 76, 79.
backtrack : 84.
bad cell : 7*, 12, 14, 20.
bad tmp var : 7*, 12, 13, 21.
badlit : 32*, 36, 37, 38*, 39, 40*, 44*, 49, 57, 65, 66, 115.
bar : 25*, 42*, 43, 69*, 71*, 73, 74, 76, 77, 78, 79, 82*,

85, 93*, 100*, 111, 115, 118, 127, 128*, 129, 132*,
135*, 137, 139, 147, 150*, 153, 161*, 162*, 163*.

base : 119, 123*, 124, 143*, 144*, 148.
bcells : 7*, 11*, 38*, 40*, 44*.
bclauses : 7*, 11*, 32*, 38*, 40*, 44*, 155*.
bdata: 24*, 26, 38*.
bdata struct: 26.
best score : 140.
bestlit : 59, 60, 85, 140.
bimp : 24*, 25*, 26, 29, 38*, 43, 48, 49, 50, 51, 53, 57,

58, 68*, 73, 74, 76, 77, 78, 79, 80, 93*, 100*, 106,
111, 117, 125, 128*, 137, 139, 145.

bptr : 24*, 69*, 71*, 135*, 136*, 150*, 151*.
branch : 28, 33, 59, 62, 80, 84, 85, 152*.
bstack : 24*, 27*, 45*, 69*, 71*, 135*, 136*, 150*, 151*.
bstamp : 34, 39, 66, 67, 73, 76, 79, 106, 111.
buf : 7*, 8, 9, 10, 11*, 16, 19.
buf size : 3*, 4*, 8, 9, 10.
bytes : 2*, 3*, 38*, 39, 45*, 54, 57, 58, 75, 90, 109,

110, 121, 134, 165*.
c: 2*, 30*, 31*, 103.
cand : 88, 89, 90, 98, 101, 102, 103, 104, 106, 110.
cand arc : 34, 108, 109, 111, 114, 117, 118.

cand arc alloc : 108, 110.
cands : 89, 96*, 98, 101, 102, 103, 104, 106, 110.
cc : 2*, 40*, 41*.
cdata: 88, 89, 90, 103.
cdata struct: 88.
cell : 6, 14, 20, 47.
cells : 7*, 9, 10, 11*, 22.
cells per chunk : 6, 14, 20.
check rank : 104.
child : 118, 122.
chooseit : 59, 62.
chunk: 6, 7*, 14, 20.
chunk struct: 6.
ch8 : 5, 16, 35, 61, 94*, 140, 153.
ci : 2*, 71*, 157*.
cia : 2*, 71*, 83*, 156*, 157*, 159*.
cinx : 24*, 27*, 30*, 32*, 38*, 40*, 41*, 44*, 71*, 83*, 135*,

136*, 150*, 151*, 155*, 156*, 159*, 163*.
cis : 2*, 71*, 83*, 156*, 157*, 159*, 163*.
clause weight : 4*, 135*, 164*, 165*.
clauses : 7*, 9, 10, 11*, 12, 16, 19, 22, 40*.
cmem : 24*, 27*, 30*, 32*, 38*, 41*, 44*, 71*, 83*, 136*,

151*, 155*, 156*, 157*, 159*.
conflict : 68*, 72*, 84, 125.
confusion : 40*, 44*, 47, 101, 122, 140, 154.
contra : 84, 125, 130*, 135*, 148.
cs : 24*, 40*, 60, 61, 62, 64, 68*, 123*, 125, 126,

129, 130*, 131*, 132*, 142, 143*, 144*, 145, 146,
147, 148, 161*.

cur cell : 7*, 12, 14, 20, 41*, 47.
cur chunk : 7*, 14, 20, 47.
cur tmp var : 7*, 12, 13, 16, 17, 21, 46, 47.
cur vchunk : 7*, 13, 21, 37, 47.
debugstop : 154.
decision : 28, 59, 85.
delta : 3*, 4*, 59.
dl contra : 84, 143*, 145, 148, 150*.
dl fail : 34, 39, 142.
dl last change : 141, 144*, 147.
dl max iter : 3*, 4*, 141, 142, 143*.
dl rho : 3*, 4*, 142.
dl trigger : 4*, 141, 142.
dl truth : 141, 143*, 144*, 145, 146, 147, 148.
dlook cs : 60, 147.
dlook done : 144*.
dlook on : 144*, 148.
dlooki : 141, 144*.
dlooklit : 141, 143*, 146, 147, 148, 149*.
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done : 2*, 59.
enter level : 62, 152*.
eptr : 60, 62, 63, 64, 68*, 81, 125, 132*, 136*, 145, 149*.
exit : 4*, 8, 9, 10, 11*, 13, 14, 16, 38*, 39, 45*, 54, 57,

58, 90, 109, 121, 134, 154, 165*.
fflush : 33, 40*.
fgets : 9, 10.
filler : 34.
finish : 50, 51.
fix u : 73, 76.
fix v : 73, 79.
fl : 123*, 124.
foo : 154.
fopen : 4*.
forcedlit : 39, 42*, 64, 124, 129.
forcedlits : 40*, 42*, 59, 62, 64, 123*, 124, 129,

140, 152*.
found : 54.
fprintf : 2*, 4*, 8, 9, 10, 11*, 13, 14, 16, 19, 22, 31*,

32*, 33, 38*, 39, 41*, 42*, 45*, 49, 54, 57, 58, 59,
61, 64, 68*, 69*, 71*, 76, 79, 83*, 84, 90, 94*, 105,
109, 111, 115, 121, 123*, 125, 126, 127, 134,
135*, 136*, 137, 139, 140, 145, 146, 150*, 151*,
153, 154, 155*, 161*, 162*, 165*.

fptr : 60, 62, 63, 64, 81, 82*, 84, 123*, 132*, 136*,
149*, 161*, 162*.

free : 20, 21, 47.
freeloc : 24*, 31*, 38*, 70.
freevar : 24*, 25*, 31*, 38*, 70, 95*, 98, 99, 153.
freevars : 24*, 31*, 38*, 70, 82*, 87, 95*, 97*, 98,

99, 140, 153.
gamm : 3*, 4*, 165*.
gb init rand : 8.
gb next rand : 15.
gb rand : 3*.
gb unif rand : 38*.
h: 2*.
hack clean : 41*.
hack in : 12.
hack out : 41*.
hash : 7*, 8, 17.
hash bits : 7*, 15, 16.
hbits : 3*, 4*, 8, 9, 16.
height : 118.
hh : 2*, 118.
i: 2*.
id : 154.
idata: 24*, 26, 58, 75.
idata struct: 26.
imems : 2*, 3*.
inactive : 32*.
infty : 115.

init cand : 98.
iptr : 24*, 28, 59, 74, 75, 77, 78, 80, 138.
iptr max : 24*, 58, 75.
iscontrary : 30*, 32*, 60, 68*, 72*, 125, 126, 135*, 136*,

139, 145, 146, 150*, 151*.
isfixed : 60, 68*, 72*, 76, 79, 125, 126, 135*, 136*, 139,

145, 146, 150*, 151*, 161*, 162*.
isfree : 30*, 32*, 60, 71*, 93*, 140, 156*, 157*, 159*.
istack : 24*, 26, 34, 58, 65, 74, 77, 78, 80, 138.
istamp : 34, 39, 65, 66, 67, 74, 77, 78, 138, 142.
j: 2*, 31*, 50.
jj : 2*, 41*, 44*, 103.
k: 2*, 26, 30*, 31*, 33, 50.
kinx : 24*, 25*, 27*, 30*, 32*, 38*, 40*, 41*, 42*, 44*, 71*, 82*,

83*, 93*, 100*, 135*, 150*, 156*, 158*, 159*, 160*, 163*.
kk : 2*, 50, 54, 55, 156*.
kmem : 24*, 27*, 30*, 32*, 38*, 44*, 71*, 83*, 135*, 150*,

156*, 158*, 159*, 163*.
known : 24*.
kval : 48, 49, 50, 54, 55, 56, 57.
l: 2*, 29, 30*, 31*, 50.
la : 2*, 29, 30*, 31*, 32*, 40*, 41*, 43, 44*, 49, 68*, 76,

79, 93*, 100*, 111, 125, 135*, 136*, 137, 145,
150*, 151*, 155*.

last base : 124, 143*, 144*, 148.
last change : 123*, 124.
last vchunk : 7*, 37, 47.
ldata: 119, 120, 121.
ldata struct: 119.
len : 35, 46, 86*, 98.
lev : 33, 86*.
level : 24*, 59, 62, 64, 80, 84, 85, 96*, 97*, 123*,

142, 152*.
levelcand : 3*, 4*, 96*, 97*.
lfptr : 60, 68*, 125, 145.
link : 34, 104, 105, 113, 115, 118, 122.
linkb : 48, 49, 52, 54, 55, 56, 57.
linkf : 48, 49, 52, 54, 55, 56, 57.
lit : 26, 74, 77, 78, 80, 119, 122, 123*, 138, 140, 144*.
lit struct: 34.
literal: 24*, 34, 39.
litname : 29, 30*, 32*, 35, 41*, 59, 68*, 69*, 71*, 76, 79,

83*, 105, 123*, 125, 126, 127, 135*, 136*, 137, 139,
145, 146, 150*, 151*, 153, 155*, 161*, 162*.

lits : 36, 37, 57, 121, 134.
ll : 2*, 63, 69*, 70, 82*, 114, 126, 127, 128*, 132*, 135*,

136*, 149*, 150*, 151*, 156*, 159*.
lmem : 24*, 34, 39, 65, 66, 73, 74, 76, 77, 78, 79,

104, 105, 106, 111, 112, 113, 114, 115, 118,
122, 126, 127, 128*, 138, 140, 142.

lng : 5, 16, 17, 46.
look : 119, 120, 121, 122, 123*, 124, 126, 140, 144*.
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look bad : 84, 115, 130*.
look cs : 60, 129.
look done : 123*.
look on : 123*, 130*.
looki : 123*, 124, 141.
looklit : 124, 126, 127, 128*, 129, 130*, 131*, 132*, 133,

137, 138, 139, 141, 142, 143*, 148.
looks : 119, 120, 122, 123*, 140, 142, 143*, 144*.
lp : 2*, 68*, 125, 145.
lptr : 28, 33, 59.
ls : 2*, 29, 30*, 31*, 32*, 43, 44*, 68*, 76, 79, 93*, 100*,

111, 125, 135*, 137, 145, 150*.
main : 2*.
malloc : 8, 13, 14, 38*, 39, 45*, 57, 58, 90, 109,

121, 134, 165*.
max clause : 11*, 164*, 165*.
max prelook arcs : 3*, 4*, 106, 109, 111.
max use : 24*, 44*, 45*.
maxcand : 89, 96*, 97*, 101, 102.
mean : 101.
mem : 3*, 24*, 26, 27*, 29, 43, 48, 49, 51, 52, 53,

57, 58, 68*, 73, 76, 79, 93*, 100*, 111, 125,
128*, 137, 139, 145.

memfree : 48, 49, 50.
memk : 48, 49, 54, 57, 58.
memk max : 3*, 4*, 48, 54, 57, 58.
memk max default : 3*, 48.
mems : 2*, 3*, 4*, 26, 33, 38*, 48, 50, 54, 59, 104.
min : 34, 104, 113, 114, 118.
mincutoff : 3*, 4*, 96*, 97*.
n: 50.
name : 5, 16, 17, 35, 46, 61, 94*, 140, 153.
ndata: 24*, 28, 39.
ndata struct: 28.
near truth : 60, 61, 62, 64, 72*, 123*, 130*.
neg : 140.
neglit : 25*.
new chunk : 14.
new vchunk : 13.
new weighted binaries : 127.
next : 5, 17, 107, 111, 114, 118.
no newbies : 89, 98.
nodes : 2*, 3*, 54, 59.
nogood : 99, 100*.
non clause : 7*, 11*, 12, 16, 18, 19.
nstack : 24*, 28, 33, 39, 59, 62, 80, 84, 85, 152*.
nullclauses : 7*, 9, 10, 11*, 19.
O: 2*.
o: 2*.
octa: 5, 35.
offset : 119, 122, 123*, 144*.
ola : 2*, 139.

old chunk : 20.
old looklit : 124, 139.
old vchunk : 21.
ols : 2*, 139.
oo : 2*, 38*, 39, 41*, 43, 44*, 50, 51, 52, 53, 55, 56, 57,

71*, 73, 76, 79, 81, 98, 101, 102, 106, 111, 115,
118, 122, 126, 128*, 137, 140, 158*, 160*.

ooo : 2*, 71*, 114, 157*.
out file : 3*, 4*, 40*, 41*, 153.
out name : 3*, 4*.
p: 2*, 12, 31*, 50.
parent : 34, 104, 105, 112, 114, 115, 118, 122,

126, 127.
pfx : 35, 86*, 98.
plevel : 59, 86*, 89, 98.
pos : 140.
poslit : 25*, 94*, 99, 104, 106, 110.
post : 122.
pp : 2*, 118.
prefix : 84, 85, 86*, 89, 98.
prev : 5, 6, 13, 14, 20, 21, 47.
primary file : 3*, 4*, 9, 10.
primary name : 3*, 4*, 10.
primary vars : 3*, 9, 10, 98.
print bimp : 29.
print clause : 30*.
print full kinx : 30*.
print kinx : 30*.
print near truths : 61.
print proto truths : 61.
print real truths : 61.
print state : 4*, 33, 59.
print state cutoff : 3*, 4*, 33.
print truths : 61.
printf : 29, 30*, 84, 153.
promote : 62, 64.
proto truth : 40*, 60, 61, 123*, 125, 126, 129, 130*,

139, 141, 142, 143*.
pu : 2*.
pv : 2*.
q: 2*, 31*, 50.
qq : 2*.
r: 2*, 33, 50, 103, 115.
random seed : 3*, 4*, 8.
rank : 34, 104, 106, 113, 114, 115, 122.
rating : 88, 89, 90, 94*, 98, 101, 102, 103, 105, 115.
real truth : 24*, 60, 61, 62, 69*, 100*, 140.
resize : 43, 50, 73, 76, 79, 128*, 137.
root : 118, 122.
rptr : 24*, 28, 31*, 33, 59, 62, 63, 64, 82*, 84, 123*,

125, 153, 161*, 162*.
rr : 115.
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rstack : 24*, 31*, 33, 39, 62, 63, 68*, 72*, 80, 81, 82*,
125, 128*, 132*, 136*, 145, 149*, 153, 161*, 162*.

s: 2*, 50, 94*.
sanity : 27*, 31*, 152*.
sanity checking : 31*, 152*.
satisfied : 84, 87, 99, 140.
score : 140.
serial : 5, 17, 41*.
settled : 105, 106, 108, 115, 118.
show basics : 2*, 3*, 10, 84.
show big clauses : 3*, 152*.
show choices : 3*, 42*, 59.
show choices max : 3*, 4*, 59.
show details : 3*, 64, 68*, 69*, 71*, 76, 79, 83*, 111.
show doubly gory details : 3*, 145, 146, 150*, 151*,

162*.
show gory details : 3*, 115, 125, 126, 127, 135*,

136*, 137, 139, 140, 161*.
show looks : 3*, 123*.
show scores : 3*, 94*.
show strong comps : 3*, 104.
show unused vars : 3*, 153.
size : 26, 27*, 29, 30*, 32*, 40*, 41*, 43, 44*, 49, 50, 57,

68*, 71*, 73, 74, 76, 77, 78, 79, 80, 82*, 83*, 93*,
100*, 111, 125, 128*, 135*, 137, 138, 139, 145,
150*, 156*, 158*, 159*, 160*, 163*.

sl : 2*, 80, 137, 138.
special start : 64, 152*.
ss : 2*.
sscanf : 4*.
stamp : 5, 12, 17, 18, 24*, 25*, 38*, 60, 61, 69*, 72*,

81, 82*, 98, 100*, 126, 139, 146.
stamptrue : 60, 68*, 125, 145.
stderr : 2*, 4*, 8, 9, 10, 11*, 13, 14, 16, 19, 22, 31*, 32*,

33, 38*, 39, 42*, 45*, 49, 54, 57, 58, 59, 61, 64, 68*,
69*, 71*, 76, 79, 83*, 84, 90, 94*, 105, 109, 111, 115,
121, 123*, 125, 126, 127, 134, 135*, 136*, 137, 139,
140, 145, 146, 150*, 151*, 154, 155*, 161*, 162*, 165*.

stdin : 1*, 7*, 9.
strlen : 9, 10.
su : 2*, 71*, 73, 74, 76, 128*, 137, 158*.
sum : 89, 93*, 94*, 98, 101.
sv : 2*, 73, 77, 79.
sw : 2*, 76, 78, 79.
t: 2*.
tdata: 24*, 27*, 38*.
tdata struct: 27*.
theta64 : 3*, 4*, 156*.
thevar : 25*, 31*, 35, 60, 69*, 70, 72*, 81, 82*, 86*, 100*,

105, 115, 126, 139, 140, 146.
thresh : 3*, 4*, 59.
timeout : 3*, 4*, 59.

timp : 24*.
tip : 107, 111, 114, 118.
tla : 2*, 71*, 83*, 135*, 150*, 156*, 159*, 163*.
tll : 2*, 69*, 71*, 82*, 83*.
tls : 2*, 71*, 83*, 135*, 150*, 156*, 159*, 163*.
tmem : 24*.
tmp var: 5, 6, 7*, 8, 12, 41*.
tmp var struct: 5.
tpair: 24*, 27*, 45*.
tpair struct: 27*.
tryit : 59, 85.
tt : 2*.
u: 2*, 27*, 31*.
ua : 2*, 71*, 73, 76, 136*, 151*, 158*.
uint: 2*, 3*, 5, 7*, 24*, 26, 27*, 28, 29, 30*, 34, 36,

38*, 39, 50, 54, 57, 60, 61, 67, 88, 89, 98, 107,
119, 124, 133, 134, 141.

ullng: 2*, 3*, 7*, 12, 41*, 93*, 124, 142.
unsat : 42*, 84.
untagged : 34, 104, 106, 111, 114, 118.
uu : 2*, 118.
u2 : 5.
v: 2*, 27*, 31*.
va : 2*, 73, 79.
var : 5, 13, 21, 47, 88, 98, 104, 106, 110.
var struct: 35.
variable: 24*, 35, 39.
vars : 7*, 9, 10, 17, 22, 31*, 37, 38*, 39, 46, 61, 90.
vars per vchunk : 5, 13, 21.
vchunk: 5, 7*, 13, 21.
vchunk struct: 5.
vcomp : 34, 104, 105, 115, 122.
verbose : 2*, 3*, 4*, 10, 42*, 59, 64, 68*, 69*, 71*, 76,

79, 83*, 84, 94*, 104, 111, 115, 123*, 125, 126,
127, 135*, 136*, 137, 139, 140, 145, 146, 150*,
151*, 152*, 153, 161*, 162*.

vmem : 24*, 35, 39, 46, 61, 86*, 94*, 98, 140, 153.
vv : 2*, 114, 118.
v0 : 2*.
w: 2*.
weighted new binaries : 126, 132*, 133, 135*.
wnb : 34, 126, 127, 128*, 140, 142.
wptr : 132*, 133, 135*, 137, 143*, 147.
wstack : 132*, 133, 134, 135*, 137, 147.
ww : 2*.
x: 2*, 61.
xl : 2*, 70.
y: 2*.
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⟨Add compensation resolvents from bar (u); but goto fix u if u is forced true 76 ⟩ Used in section 73.

⟨Add compensation resolvents from bar (v); but goto fix v if v is forced true 79 ⟩ Used in section 73.

⟨Allocate a block p of size s+ s 54 ⟩ Used in section 53.

⟨Allocate special arrays 58, 90, 109, 121, 134, 165* ⟩ Used in section 37.

⟨Allocate the main arrays 38*, 39 ⟩ Used in section 37.

⟨Allocate bstack 45* ⟩ Used in section 44*.

⟨Begin the processing of a new node 59 ⟩ Used in section 152*.

⟨Build kinx and kmem from the stored big clauses 44* ⟩ Used in section 40*.

⟨Bump bstamp to a unique value 66 ⟩ Used in sections 73 and 106.

⟨Bump istamp to a unique value 65 ⟩ Used in sections 62 and 64.

⟨Check consistency 47 ⟩ Used in section 37.

⟨Check for necessary assignments 139 ⟩ Used in section 126.

⟨Check the sanity of bimp and mem 49 ⟩ Used in section 31*.

⟨Check the sanity of cinx and cmem , kinx and kmem 32* ⟩ Used in section 31*.

⟨Choose bestlit , which will be the next branch tried 140 ⟩ Used in section 59.

⟨Compute rating [x] 94* ⟩ Used in section 95*.

⟨Compute sum , the score of l 93* ⟩ Used in section 94*.

⟨Construct a suitable forest 117 ⟩ Used in section 87.

⟨Construct the look table 122 ⟩ Used in section 117.

⟨Convert the windfalls to binary implications from looklit 137 ⟩ Used in sections 132* and 143*.

⟨Copy all the relevant arcs to cand arc 110 ⟩ Used in section 106.

⟨Copy all the temporary cells to the bimp , mem , cinx , cmem , kinx , and kmem arrays in proper format 40* ⟩
Used in section 37.

⟨Copy all the temporary variable nodes to the vmem array in proper format 46 ⟩ Used in section 37.

⟨Copy the arcs from l into the cand arc array 111 ⟩ Used in section 110.

⟨Determine the strong components; goto look bad if there’s a contradiction 104 ⟩ Used in section 87.

⟨Discard binary implications at the current level 80 ⟩ Used in section 84.

⟨Do a double lookahead from looklit , if that seems advisable 142 ⟩ Used in section 126.

⟨Do the prelookahead 87 ⟩ Used in section 123*.

⟨Double look ahead from looklit ; goto contra if a contradiction arises 143* ⟩ Used in section 142.

⟨Doublelook ahead at consequences of l, and goto contra if a contradiction is found 146 ⟩ Used in section 144*.

⟨Exploit an autarky 127 ⟩ Used in section 126.

⟨Explore one step from the current vertex v, possibly moving to another current vertex and calling it v 114 ⟩
Used in section 112.

⟨Find the heights and the child/sibling links 118 ⟩ Used in section 117.

⟨Find cur tmp var⃗name in the hash table at p 17 ⟩ Used in section 12.

⟨Force dlooklit to be (dl) false, and complement it 147 ⟩ Used in sections 146 and 148.

⟨Force looklit to be (proto) false, and complement it 129 ⟩ Used in sections 126, 127, 130*, and 139.

⟨Global variables 3*, 7*, 24*, 36, 48, 60, 67, 89, 108, 120, 124, 133, 141, 164* ⟩ Used in section 2*.

⟨Handle a duplicate literal 18 ⟩ Used in section 12.

⟨ If all clauses are satisfied, goto satisfied 99 ⟩ Used in section 98.

⟨ If l implies any unsatisfied clauses, goto nogood 100* ⟩ Used in section 99.

⟨ Increase iptr 75 ⟩ Used in sections 74, 77, 78, and 138.

⟨ Initialize everything 8, 15 ⟩ Used in section 2*.

⟨ Initialize mem with empty bimp lists 57 ⟩ Used in section 38*.

⟨ Input the clause in buf 11* ⟩ Used in sections 9 and 10.

⟨ Input the clauses 9 ⟩ Used in section 2*.

⟨ Input the primary variables 10 ⟩ Used in section 9.

⟨ Insert the cells for the literals of clause c 41* ⟩ Used in section 40*.

⟨ Install a new chunk 14 ⟩ Used in section 12.

⟨ Install a new vchunk 13 ⟩ Used in section 12.
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⟨Look ahead and gather data about how to make the next branch; but goto look bad if a contradiction
arises 123* ⟩ Used in section 59.

⟨Look ahead at consequences of l, and goto look bad if a conflict is found 126 ⟩ Used in section 123*.

⟨Make all vertices unseen and all arcs untagged 106 ⟩ Used in section 104.

⟨Make sure that bar (u) has an istack entry 74 ⟩ Used in sections 73, 128*, and 137.

⟨Make sure that bar (v) has an istack entry 77 ⟩ Used in section 73.

⟨Make sure that bar (w) has an istack entry 78 ⟩ Used in sections 76 and 79.

⟨Make sure that looklit has an istack entry 138 ⟩ Used in section 137.

⟨Make vertex v active 113 ⟩ Used in sections 112 and 114.

⟨Make a a free block of size 1 ≪ k 56 ⟩ Used in section 53.

⟨Make ll equivalent to looklit 128* ⟩ Used in section 127.

⟨Make p+ (1 ≪ kk ) a free block of size 1 ≪ kk 55 ⟩ Used in section 54.

⟨Move to branch 1 85 ⟩ Used in section 84.

⟨Move cur cell backward to the previous cell 20 ⟩ Used in sections 19 and 41*.

⟨Move cur tmp var backward to the previous temporary variable 21 ⟩ Used in section 46.

⟨Pare down the candidates to at most maxcand 101 ⟩ Used in section 97*.

⟨Perform a depth-first search with l as root, finding the strong components of all vertices reachable from
l 112 ⟩ Used in section 104.

⟨Preselect a set of candidate variables for lookahead 97* ⟩ Used in section 87.

⟨Print all the big clauses to stderr 155* ⟩ Used in section 152*.

⟨Print the solution found 153 ⟩ Used in section 84.

⟨Print the strong components 105 ⟩ Used in section 104.

⟨Process the command line 4* ⟩ Used in section 2*.

⟨Promote near-truth to real-truth; but goto conflict if a contradiction arises 63 ⟩ Used in section 62.

⟨Propagate binary doublelookahead implications of l 145 ⟩ Used in sections 149* and 150*.

⟨Propagate binary implications of l; goto conflict if a contradiction arises 68* ⟩ Used in sections 62, 64, 72*,

and 73.

⟨Propagate binary lookahead implications of l; goto contra if a contradiction arises 125 ⟩ Used in sections 132*

and 135*.

⟨Put all free participants into the initial list of candidates 98 ⟩ Used in section 97*.

⟨Put the ratings in rating 95* ⟩ Used in section 97*.

⟨Put the remaining doublelook literal of c into bstack 151* ⟩ Used in section 150*.

⟨Put the remaining literal of c into bstack 136* ⟩ Used in section 135*.

⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 16 ⟩ Used

in section 12.

⟨Record thevar (u) as a participant 86* ⟩ Used in section 71*.

⟨Recover from a double lookahead contradiction 148 ⟩ Used in section 84.

⟨Recover from a lookahead contradiction 130* ⟩ Used in section 84.

⟨Recover from conflicts 84 ⟩ Used in section 152*.

⟨Reduce all big clauses that contain tll ; if any become binary, swap them out and put them on bstack 71* ⟩
Used in section 69*.

⟨Remove all variables of the current clause 19 ⟩ Used in sections 10 and 11*.

⟨Remove p from its avail list 52 ⟩ Used in sections 51 and 54.

⟨Remove thevar (ll ) from the freevar list 70 ⟩ Used in section 69*.

⟨Remove v and all its successors on the active stack from the tree, and mark them as a strong component
of the digraph 115 ⟩ Used in section 114.

⟨Report the successful completion of the input phase 22 ⟩ Used in section 2*.

⟨Reset the doublelook fptr by removing unfixed literals from rstack 162* ⟩ Used in sections 144* and 149*.

⟨Reset fptr by removing unfixed literals from rstack 161* ⟩ Used in sections 123*, 130*, and 132*.

⟨Resize when the buddy is free 51 ⟩ Used in section 50.

⟨Resize when the buddy is reserved 53 ⟩ Used in section 50.
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⟨Run through iterations of doublelook analogous to the iterations of ordinary lookahead 144* ⟩ Used in

section 143*.

⟨Scan and record a variable; negate it if i ≡ 1 12 ⟩ Used in section 11*.

⟨Select the maxcand best-rated candidates 102 ⟩ Used in section 101.

⟨Set up the main data structures 37 ⟩ Used in section 2*.

⟨Sift cand [j] up 103 ⟩ Used in section 102.

⟨Solve the problem 152* ⟩ Used in section 2*.

⟨Store a binary clause in bimp 43 ⟩ Used in section 41*.

⟨Store a unary clause in forcedlit 42* ⟩ Used in section 41*.

⟨Subroutines 29, 30*, 31*, 33, 50, 61, 154 ⟩ Used in section 2*.

⟨Swap in all big clauses that contain ll 159* ⟩ Used in section 82*.

⟨Swap out all big clauses that contain ll 156* ⟩ Used in section 69*.

⟨Swap c back in to u’s clause list 160* ⟩ Used in sections 83* and 159*.

⟨Swap c out of u’s clause list 158* ⟩ Used in sections 71*, 156*, and 157*.

⟨Swap c out while gathering its free literals 157* ⟩ Used in section 156*.

⟨Type definitions 5, 6, 26, 27*, 28, 34, 35, 88, 107, 119 ⟩ Used in section 2*.

⟨Unreduce all big clauses that contain tll ; if they had become binary, swap them back in 83* ⟩ Used in

section 82*.

⟨Unreduce all big clauses that contained bar (u) during lookahead 163* ⟩ Used in sections 161* and 162*.

⟨Unset the nearly true literals 81 ⟩ Used in section 84.

⟨Unset the really true literals 82* ⟩ Used in section 84.

⟨Update data structures for all consequences of the forced literals discovered during the lookahead; but
goto conflict if a contradiction arises 64 ⟩ Used in section 59.

⟨Update data structures for all consequences of l; but goto conflict if a contradiction arises 62 ⟩ Used in

section 59.

⟨Update data structures for the real truth of ll ; but goto conflict if a contradiction arises 69* ⟩ Used in

section 63.

⟨Update dlookahead data structures for consequences of dlooklit ; but goto dl contra if a contradiction
arises 149* ⟩ Used in sections 143*, 146, and 147.

⟨Update dlookahead data structures for the truth of ll ; but goto dl contra if a contradiction arises 150* ⟩
Used in section 149*.

⟨Update for a new binary clause u ∨ v 73 ⟩ Used in section 72*.

⟨Update for a potentially new binary clause u ∨ v 72* ⟩ Used in section 69*.

⟨Update lookahead data structures for consequences of looklit ; but goto contra if a contradiction arises 132* ⟩
Used in sections 126 and 129.

⟨Update lookahead data structures for the truth of ll ; but goto contra if a contradiction arises 135* ⟩ Used

in section 132*.
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