
§1 GB ROGET INTRODUCTION 1

Important: Before reading GB ROGET, please read or at least skim the programs for GB GRAPH and GB IO.

1. Introduction. This GraphBase module contains the roget subroutine, which creates a family of
graphs based on Roget’s Thesaurus. An example of the use of this procedure can be found in the demo
program ROGET COMPONENTS.

⟨ gb_roget.h 1 ⟩ ≡
extern Graph ∗roget ();

See also section 12.

2. The subroutine call roget (n,min distance , prob , seed) constructs a graph based on the information in
roget.dat. Each vertex of the graph corresponds to one of the 1022 categories in the 1879 edition of Peter
Mark Roget’s Thesaurus of English Words and Phrases, edited by John Lewis Roget. An arc goes from one
category to another if Roget gave a reference to the latter among the words and phrases of the former, or if
the two categories were directly related to each other by their positions in Roget’s book. For example, the
vertex for category 312 (‘ascent’) has arcs to the vertices for categories 224 (‘obliquity’), 313 (‘descent’), and
316 (‘leap’), because Roget gave explicit cross-references from 312 to 224 and 316, and because category 312
was implicitly paired with 313 in his scheme.
The constructed graph will have min(n, 1022) vertices; however, the default value n = 1022 is substituted

when n = 0. If n is less than 1022, the n categories will be selected at random, and all arcs to unselected
categories will be omitted. Arcs will also be omitted if they correspond to categories whose numbers differ
by less than min distance . For example, if min distance > 1, the arc between categories 312 and 313 will
not be included. (Roget sometimes formed clusters of three interrelated categories; to avoid cross-references
within all such clusters, you can set min distance = 3.)
If prob > 0, arcs that would ordinarily be included in the graph are rejected with probability prob/65536.

This provides a way to obtain sparser graphs.
The vertices will appear in random order. However, all “randomness” in GraphBase graphs is reproducible;

it depends only on the value of a given seed , which can be any nonnegative integer less than 231. For
example, everyone who asks for roget (1000, 3, 32768, 50) will obtain exactly the same graph, regardless of
their computer system.
Changing the value of prob will affect only the arcs of the generated graph; it will change neither the

choice of vertices nor the vertex order.

#define MAX_N 1022 /∗ the number of categories in Roget’s book ∗/

3. If the roget routine encounters a problem, it returns Λ (NULL), after putting a code number into the
external variable panic code . This code number identifies the type of failure. Otherwise roget returns
a pointer to the newly created graph, which will be represented with the data structures explained in
GB GRAPH. (The external variable panic code is itself defined in GB GRAPH.)

#define panic(c) { panic code = c; gb trouble code = 0; return Λ; }

2 INTRODUCTION GB ROGET §4

4. The C file gb_roget.c has the following general shape:

#include "gb_io.h" /∗ we will use the GB IO routines for input ∗/
#include "gb_flip.h" /∗ we will use the GB FLIP routines for random numbers ∗/
#include "gb_graph.h" /∗ and we will use the GB GRAPH data structures ∗/
⟨Preprocessor definitions ⟩
⟨Private variables 7 ⟩
Graph ∗roget (n,min distance , prob , seed)

unsigned long n; /∗ number of vertices desired ∗/
unsigned long min distance ; /∗ smallest inter-category distance allowed in an arc ∗/
unsigned long prob ; /∗ 65536 times the probability of rejecting an arc ∗/
long seed ; /∗ random number seed ∗/

{ ⟨Local variables 5 ⟩
gb init rand (seed);
if (n ≡ 0 ∨ n > MAX_N) n = MAX_N;
⟨Set up a graph with n vertices 6 ⟩;
⟨Determine the n categories to use in the graph 8 ⟩;
⟨ Input roget.dat and build the graph 10 ⟩;
if (gb trouble code) {

gb recycle (new graph);
panic(alloc fault); /∗ oops, we ran out of memory somewhere back there ∗/

}
return new graph ;

}

5. ⟨Local variables 5 ⟩ ≡
Graph ∗new graph ; /∗ the graph constructed by roget ∗/

See also section 9.

This code is used in section 4.

§6 GB ROGET VERTICES 3

6. Vertices.

⟨Set up a graph with n vertices 6 ⟩ ≡
new graph = gb new graph (n);
if (new graph ≡ Λ) panic(no room); /∗ out of memory before we’re even started ∗/
sprintf (new graph⃗ id , "roget(%lu,%lu,%lu,%ld)", n,min distance , prob , seed);
strcpy (new graph⃗util types , "IZZZZZZZZZZZZZ");

This code is used in section 4.

7. The first nontrivial thing we need to do is find a random selection and permutation of n vertices. We will
compute a mapping table such that mapping [k] is non-Λ for exactly n randomly selected category numbers k.
Moreover, these non-Λ values will be a random permutation of the vertices of the graph.

⟨Private variables 7 ⟩ ≡
static Vertex ∗mapping [MAX_N + 1]; /∗ the vertex corresponding to a given category ∗/
static long cats [MAX_N]; /∗ table of category numbers that have not yet been used ∗/

This code is used in section 4.

8. During the loop on v in this step, k is the number of categories whose mapping value is still Λ. The
first k entries of cats will contain those category numbers in some order.

⟨Determine the n categories to use in the graph 8 ⟩ ≡
for (k = 0; k < MAX_N; k++) cats [k] = k + 1, mapping [k + 1] = Λ;
for (v = new graph⃗vertices + n− 1; v ≥ new graph⃗vertices ; v−−) {
j = gb unif rand (k);
mapping [cats [j]] = v;
cats [j] = cats [−−k];

}
This code is used in section 4.

9. ⟨Local variables 5 ⟩ +≡
register long j, k; /∗ all-purpose indices ∗/
register Vertex ∗v; /∗ current vertex ∗/

4 ARCS GB ROGET §10

10. Arcs. The data in roget.dat appears in 1022 lines, one for each category. For example, the line

312ascent:224 313 316

specifies the arcs from category 312 as explained earlier. First comes the category number, then the category
name, then a colon, then zero or more numbers specifying arcs to other categories; the numbers are separated
by spaces.
Some categories have too many arcs to fit on a single line; the data for these categories can be found on

two lines, the first line ending with a backslash and the second line beginning with a space.

⟨ Input roget.dat and build the graph 10 ⟩ ≡
if (gb open ("roget.dat") ̸= 0) panic(early data fault);

/∗ couldn’t open "roget.dat" using GraphBase conventions ∗/
for (k = 1; ¬gb eof (); k++)
⟨Read the data for category k, and put it in the graph if it has been selected 11 ⟩;

if (gb close () ̸= 0) panic(late data fault); /∗ something’s wrong with "roget.dat"; see io errors ∗/
if (k ̸= MAX_N + 1) panic(impossible); /∗ we don’t have the right value of MAX_N ∗/

This code is used in section 4.

11. We check that the data isn’t garbled, except that we don’t bother to look at unselected categories.
The original category number is stored in vertex utility field cat no , in case anybody wants to see it.

#define cat no u.I /∗ utility field u of each vertex holds the category number ∗/
⟨Read the data for category k, and put it in the graph if it has been selected 11 ⟩ ≡

{
if (mapping [k]) { /∗ yes, this category has been selected ∗/

if (gb number (10) ̸= k) panic(syntax error); /∗ out of synch ∗/
(void) gb string (str buf , ’:’);
if (gb char () ̸= ’:’) panic(syntax error + 1); /∗ no colon found ∗/
v = mapping [k];
v⃗ name = gb save string (str buf);
v⃗ cat no = k;
⟨Add arcs from v for every category that’s both listed on the line and selected 13 ⟩;

} else ⟨Skip past the data for one category 14 ⟩;
}

This code is used in section 10.

12. ⟨ gb_roget.h 1 ⟩ +≡
#define cat no u.I /∗ definition of cat no is repeated in the header file ∗/

§13 GB ROGET ARCS 5

13. #define iabs (x) ((x) < 0 ? −(x) : (x))

⟨Add arcs from v for every category that’s both listed on the line and selected 13 ⟩ ≡
j = gb number (10);
if (j ≡ 0) goto done ; /∗ some categories lead to no arcs at all ∗/
while (1) {
if (j > MAX_N) panic(syntax error + 2); /∗ category code out of range ∗/
if (mapping [j] ∧ iabs (j − k) ≥ min distance ∧ (prob ≡ 0 ∨ ((gb next rand () ≫ 15) ≥ prob)))

gb new arc(v,mapping [j], 1L);
switch (gb char ()) {
case ’\\’: gb newline ();
if (gb char () ̸= ’␣’) panic(syntax error + 3); /∗ space should begin a continuation line ∗/

/∗ fall through to the space case ∗/
case ’␣’: j = gb number (10); break;
case ’\n’: goto done ;
default: panic(syntax error + 4); /∗ illegal character following category number ∗/
}

}
done : gb newline ();

This code is used in section 11.

14. We want to call gb newline () twice if the current line ends with a backslash; otherwise we want to
call it just once. There’s an obvious way to do that, and there’s also a faster and trickier way. The author
apologizes here for succumbing to some old-fashioned impulses. (Recall that gb string returns the location
just following the ’\0’ it places at the end of a scanned string.)

⟨Skip past the data for one category 14 ⟩ ≡
{
if (∗(gb string (str buf , ’\n’)− 2) ≡ ’\\’) gb newline (); /∗ the first line ended with backslash ∗/
gb newline ();

}
This code is used in section 11.

6 INDEX GB ROGET §15

15. Index. Here is a list that shows where the identifiers of this program are defined and used.

alloc fault : 4.
cat no : 11, 12.
cats : 7, 8.
done : 13.
early data fault : 10.
gb char : 11, 13.
gb close : 10.
gb eof : 10.
gb init rand : 4.
gb new arc : 13.
gb new graph : 6.
gb newline : 13, 14.
gb next rand : 13.
gb number : 11, 13.
gb open : 10.
gb recycle : 4.
gb save string : 11.
gb string : 11, 14.
gb trouble code : 3, 4.
gb unif rand : 8.
Graph: 1, 4, 5.
iabs : 13.
id : 6.
impossible : 10.
io errors : 10.
j: 9.
k: 9.
late data fault : 10.
mapping : 7, 8, 11, 13.
MAX_N: 2, 4, 7, 8, 10, 13.
min distance : 2, 4, 6, 13.
n: 4.
name : 11.
new graph : 4, 5, 6, 8.
no room : 6.
panic : 3, 4, 6, 10, 11, 13.
panic code : 3.
prob : 2, 4, 6, 13.
roget : 1, 2, 3, 4, 5.
Roget, John Lewis: 2.
Roget, Peter Mark: 2.
seed : 2, 4, 6.
sprintf : 6.
str buf : 11, 14.
strcpy : 6.
syntax error : 11, 13.
util types : 6.
v: 9.
Vertex: 7, 9.
vertices : 8.

GB ROGET NAMES OF THE SECTIONS 7

⟨Add arcs from v for every category that’s both listed on the line and selected 13 ⟩ Used in section 11.

⟨Determine the n categories to use in the graph 8 ⟩ Used in section 4.

⟨ Input roget.dat and build the graph 10 ⟩ Used in section 4.

⟨Local variables 5, 9 ⟩ Used in section 4.

⟨Private variables 7 ⟩ Used in section 4.

⟨Read the data for category k, and put it in the graph if it has been selected 11 ⟩ Used in section 10.

⟨Set up a graph with n vertices 6 ⟩ Used in section 4.

⟨Skip past the data for one category 14 ⟩ Used in section 11.

⟨ gb_roget.h 1, 12 ⟩

May 19, 2018 at 02:29

GB ROGET
Section Page

Introduction . 1 1
Vertices . 6 3
Arcs . 10 4
Index . 15 6

c⃝ 1993 Stanford University

This file may be freely copied and distributed, provided that no changes whatsoever are made. All users are asked
to help keep the Stanford GraphBase files consistent and “uncorrupted,” identical everywhere in the world. Changes
are permissible only if the modified file is given a new name, different from the names of existing files in the Stanford
GraphBase, and only if the modified file is clearly identified as not being part of that GraphBase. (The CWEB system
has a “change file” facility by which users can easily make minor alterations without modifying the master source
files in any way. Everybody is supposed to use change files instead of changing the files.) The author has tried his
best to produce correct and useful programs, in order to help promote computer science research, but no warranty
of any kind should be assumed.

Preliminary work on the Stanford GraphBase project was supported in part by National Science Foundation grant
CCR-86-10181.

